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Chapter 1

Introduction

The evolution of the Earth in particular and the universe in general has fascinated human beings since

ages. The study of material properties of the Earth dates back to around 300 B.C in ancient Greece.

Since then attempt has been made to understand the physical processes happening inside and around

the Earth. In the present thesis, we attempt on extending this knowledge using theoretical tools widely

used in the physical sciences community.

Figure 1.1 Interior of the Earth. Adapted from [1]

1



2 Chapter 1 Introduction

1.1 Structure of the Earth

The internal structure of the Earth is revealed primarily by compressional waves (primary waves or P

waves) and shear waves (secondary or S waves) that pass throughthe planet in response to earthquakes.

Seismic wave velocities vary with pressure(depth), temperature, mineralogy, chemical composition and

degree of partial melting. Three first order seismic discontinuities divide theEarth into crust, mantle

and core(see Fig. 1.1).

The major regions of the Earth can be summarized as follows:

1.Crust- Crust is the outermost solid shell of the Earth, which is chemically distinct from the

underlying mantle. There are two different types of crust: thin oceanic crust that underlies the ocean

basins and thicker continental crust that underlies the continents. Thesetwo different types of crust

are made up of different types of rock. The thin oceanic crust is composed primarily of basalt and the

thicker continental crust is composed primarily of granite. The low density ofthe thick continental

crust allows it to "float" in high relief on the much higher density mantle below.

2. Mantle - Earth’s mantle is beleived to be composed mainly of olivine-rich rock. It has different

temperatures at different depths. The temperature is lowest immediately beneath the crust and increases

with increasing depth. The highest temperatures occur where the mantle material is in contact with

the heat-producing core. This steady increase of temperature with depth isknown as the geothermal

gradient. The geothermal gradient is responsible for different rock behaviors and the different rock

behaviors are used to divide the mantle into two different zones. Rocks in the upper mantle are cool

and brittle, while rocks in the lower mantle are hot and soft (but not molten). Rocks in the upper mantle

are brittle enough to break under stress and produce earthquakes. Rocks in the lower mantle, on the

other hand, are soft and flow when subjected to forces instead of breaking. The lower limit of brittle

behavior is the boundary between the upper and lower mantle.

3.Core - Earth’s Core is composed mainly of iron and nickel alloy. This composition is assumed

based upon calculations of its density and upon the fact that many meteorites (which are thought to be

portions of the interior of a planetary body) are iron-nickel alloys. There are three main sources of heat
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in the deep Earth: (1) heat from when the planet formed and accreted, which has not yet been lost; (2)

frictional heating, caused by denser core material sinking to the center ofthe planet; and (3) heat from

the decay of radioactive elements. Hence the core is the Earth’s source of internal heat.

The core is divided into two different zones. The outer core is a liquid because the temperatures

there are adequate to melt the iron-nickel alloy. However, the inner core isa solid even though its

temperature is higher than the outer core. Here, tremendous pressure, produced by the weight of the

overlying rocks is strong enough to crowd the atoms tightly together and prevents the liquid state.

In this thesis, we focus primarily on minerals found in the Earth’s upper mantle.

1.2 Mineralogy of the Mantle

The silicate minerals make up the largest and most important class of rock-forming minerals in the

mantle. Silicate rocks may belong to any of the three major classes: igneous(formed by cooling and

solidification of magma or lava), sedimentary(formed by sedimentation of materialson the Earth’s

surface and beneath water) and metamorphic(formed due to transformationof an existing rock of any

type).

All silicates have the following general features:

1. The SiO4 tetrahedron invariably and inadvertently forms the basic structural unit among all

silicates as shown in the centre of Fig. 1.2.

2. The different silicate types arise from the different ways in which the silicon-oxygen tetrahedra

in a given structure are related to each other. The rule that the tetrahedracan share corners only, and not

sides or edges has been found to be universally true, consequently twotetrahedra can have one oxygen

in common between them. However every oxygen of a given tetrahedra may be shared with another

tetrahedra.

3. Since the oxygen atoms are usually the largest in the structure as given by the ionic radii, these

atoms are chiefly responsible for the size of the unit cell. From this it follows that the number of oxygen

atoms in the silicate is highly important.
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4. There are characteristic ways in which the tetrahedra have been foundto combine in silicates,

and these ways of linkages are comparatively few in number. If the tetrahedra are not combined to each

other, the composition of the silicate is SiO4 type, if all the corners are shared with other tetrahedra,

the composition is SiO2 type. Other relations yield intermediate type(see Fig. 1.2). The list is given

below:

Figure 1.2Different ways in which the Si-O tetrahedral units may be interconnected in min-
erals. [2]

(a) Three dimensional network (silica type) : All the tetrahedra share corners with other tetrahedra

giving a three-dimensional network. Silica, in any of its modifications, belongs to the category of this

linkage, which results in a composition of SiO2.

(b) The sheet structure(phyllo-silicate) : This structure is obtained when tetrahedra are placed all in

one plane with each tetrahedron being joined to other tetrahedra with three atoms lying in the common

plane. An indefinite extension of this linkage produces a hexagonal network in the plane. The example
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of silicate minerals with this structure is mica, with composition of Si2O5.

(c1) The chain structure(Iono-silicate) : In this structure,SiO4 tetrahedra join together to form

chains of infinite extent. There are several modifications of this structure,yielding somewhat different

compositions.(i) a single chain, one long linkage of tetrahedra of indefinite extent producing a compo-

sition of SiO3 as in pyroxenes (ii) Di-silicate giving a composition of Si4O11 as in the amphiboles. (iii)

A sort of triple chain, with some modifications, yielding Si3O8 compositions.

(c2)Ring structure(Cyclo-silicate) : Two of the tetrahedral units are corner shared, as in the chains,

but instead of extending indefinitely in one direction the chains make closed units of a ring like struc-

ture. Benitoite with Si3O9 ring and Beryl with Si6O18 ring are typical examples.

(d) Double Tetrahedra structure(Soro-silicate) : These structures arise from two tetrahedra sharing

a common oxygen between them. The resulting composition is Si2O7 and examples are thortvietite,

melilite etc.

(e) Independent tetrahedral groups(Orthosilicate)- In this silicate type none of the tetrahedra shares

corner with each other. The resultant composition is SiO4 and the example is olivine.

The main minerals in the upper mantle are olivine, pyroxene and garnet. These minerals are only

stable over a limited range of pressure and temperature. As pressure is increased the atoms re-arrange

themselves and ultimately a new arrangement of atoms is energetically more favorable, usually with

denser packing. The mineralogy of the mantle therefore changes with depthdue to solid-solid phase

changes. The elastic property and density of the mantle are primarily controlled by the proportions of

the above minerals or their high pressure equivalents. To a lesser extentthe properties depend on the

composition of the individual minerals.

The following gives a brief description of the three most common minerals in the Earth’s upper

mantle:

Olivine - Olivine and its high pressure structural variants constitute over 50% of the Earth’s upper

mantle. It is one of Earth’s most common mineral by volume. Olivine gets its name from its typical

olive green color(see Fig. 1.3). In addition to being one of the most common mineral on the Earth’s

crust, it is also found in Mars, moon and meteorites. The spectral signatureof olivines have been
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Figure 1.3Olivine crystal showing its characteristic olive green color.

found in the dust discs around young stars. Tails of comets also show spectral signature of olivine.

Olivines have a general chemical formula M2SiO4, where M refers to a metal cation such as Mg, Fe,

Mn, Ni etc. As mentioned, they are neso-silicates, i.e, the SiO4 tetrahedral units in the olivine crystal

are isolated from each other. The most abundant olivines are magnesium-iron olivines where M cation

is either Mg or Fe. The ratio of Mg and Fe varies between the two end members of the solid solution

series: forsterite(Mg2SiO4) and fayalite(Fe2SiO4). Compositions of olivine are generally expressed

in terms of molar fraction of forsterite and fayalite(eg, Fo70Fa30). Forsterite has a very high melting

temperature (1900◦C), whereas fayalite has a comparatively lower melting temperature of 1200◦C at

atmospheric pressure. Olivine incorporates very minor amount of other elements such as Ni, Ca etc.

in addition to magnesium, iron, silicon and oxygen. They are found to occur inmafic and ultramafic

igneous rocks and as a primary mineral in certain metamorphic rocks. Mg richolivine crystallizes from

magma that is rich is Mg and low in silica. Olivine and its high pressure structuralvariants constitute

over 50% of the Earth’s upper mantle, and olivine is one of Earth’s most common mineral by volume.

The metamorphosis of some sedimentary rocks(such as dolomite) high in Mg content also produce

Mg-rich olivine or forsterite. Fe-rich olivine is comparatively less common,and occurs in igneous

rocks in small amounts in rare granites and rhyolites(volcanic rock rich in silica(SiO2) content) and

extremely Fe-rich olivine can exist stably with quartz. In contrast Mg-richolivines do not occur stably
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with silica minerals. Mg-rich olivines are stable to a pressure upto 410 Km inside the Earth. Because it

is thought to be the most abundant mineral in the Earth’s mantle at the shallowerdepths, the properties

of olivine have a dominant effect on the rheology of that part of the Earth, and hence on the solid flows

that controls plate tectonics.

Pyroxene- The name pyroxene comes from the Greek words for fire (pyro) and stranger (xenos).

Pyroxenes were named this way because of their presence in volcanic lavas. They are early-forming

minerals that crystallized before the lava erupted (see Fig. 1.4). As mentioned before, pyroxenes are

ionosilicates, i.e, chained silicates and may crystallize in both orthorhombic and monoclinic form. They

are mostly found in igneous and metamorphic rocks. They have a general formula:M2(SiO3)2, where

M : Mg, Fe2+, Ca, Na and rarely Zn, Mn, Li.

Figure 1.4A Pyroxene crystal. The dark color shows higher Fe concentration.

Garnet - The name "garnet" comes from the 14th century Middle English word Garnet meaning

’dark red’(see Fig. 1.5). Garnet species are found in many colors including red, orange, yellow, green,

blue, purple, brown, black, pink and colorless. They have been popularly used over ages as gem-stone

and abrasive. Structurally they are neso-silicates, i.e, the SiO4 tetrahedral units are completely isolated

from each other, with a chemical formula X3Y2(SiO4)3 where X is usually occupied by divalent cations

and Y is usually occupied by tri-valent cations.
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Figure 1.5A Garnet crystal.

1.3 Overview of Thesis

The aim of the present thesis is to study the structural, electronic, magnetic and mechanical properties

of the olivine and pyroxene silicate minerals using ab-initio and classical simulation approach.

The following is an overview of the present thesis work:

• In the next chapter, the methodologies used for the present study havebeen elaborated on. It

involved first-principles density functional calculations as well as Monte-Carlo simulation of the

lattice gas model.

• Chapter 3 deals with the site preference of Fe in olivine and pyroxene. Olivines [7] and pyroxenes

[4] have two in-equivalent octahedral sites M1 and M2, which are the contenders for hosting Fe

ion. OurT = 0K study in the total-energy-minimized structures indicate a strong preference for

Fe to occupy M2 site in case of pyroxene and a preference for Fe to occupy M1 site in case of

olivine. We provide the microscopic understanding of our finding in terms ofdensity of states

and charge densities.

• In Chapter 4, the effect of temperature on the site preference of Fe in olivine is discussed. It

has long been debated among various experimental groups [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18] whether there is a cross-over of the cation partitioning beyond a certain temperature.
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Here we present studies based on a combination of ab-initio electronic structure and classical

Monte-Carlo(MC) techniques on this very problem of cross-over of cation partitioning in mixed

Fe-Mg olivines. Our MC scheme uses interactions derived out of ab-initiodensity functional

calculations carried out on experimentally reported crystal structure data. Our results show that

there is no reversal of the preference of Fe for M1 over M2 as a function of temperature.

• In Chapter 5, our study on the structural, electronic and magnetic properties of vacancy bearing

silicate mineral, Fe2SiO4 using first principle density functional theory(DFT) is presented. Our

DFT simulated structure, which is compositionally close to naturally occurring Laihunite com-

pound [20] shows good agreement in the general trend in the change ofFe2SiO4 crystal structure

upon vacancy introduction. Our study shows that the introduction of vacancy creates charge dis-

proportionation of Fe ions into Fe2+-like and Fe3+ like ions with a charge difference larger than

0.5, keeping the valences of other ions unaltered. Fe2+- like ions are found to occupy octahedral

sites of specific symmetry while Fe3+-like occupy the other leading to charge ordering at zero

temperature. We have also studied the magnetic ordering of Fe ions.

• In Chapter 6, using a combination of First principles calculations and MonteCarlo simulations,

we show that Fe containing silicates such as olivines naturally offer a way for visualizing tracks

left by diffusing vacancies. Fe in its 2+ and 3+ valence states prefers twodistinct cationic sites

in the olivine structure. Vacancies formed at cationic M sites, cause neighboring Fe ions in their

normally occurring Fe2+ state to change valency to Fe3+, compensating for the charge imbalance

and reducing energy costs, consequently altering the local site preference of Fe. Once the va-

cancy diffuses away, Fe atoms remain stuck in their meta-stable location producing a microscopic

record of the vacancy’s trajectory. Our results may be verified using high resolution transmission

electron microscopy, combined with electron energy-loss spectroscopy.

• Chapter 7 includes summary and outlook of the present work.
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Chapter 2

Methodology

This chapter deals with the methodologies which form the basis of the computational techniques used

in calculating various properties of the minerals presented in the thesis. The first section deals with

the theoretical framework of our quantum mechanical calculations. This is followed by the details and

theory behind our classical simulation approach used in this thesis.

2.1 Electronic structure calculation

2.1.1 Many Body Hamiltonian

Matter is made out of atoms, and the atoms in turn are made out of a positively charged nucleus

and one or many negatively charged electrons, such that the net charge in the atom is zero. Matter

hence, irrespective of its state(phase) or dimensionality, may be considered as a collection of interacting

electrons and ions. The exact theory for such a system is based on solving the many-body Schrodinger

equation of the form:

HΨ(RI , r i) = EΨ(RI , r i) (2.1)

where:

E is the energy of the system,Ψ(RI , r i) is the many body wave-function that describes the state of the

13
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system,RI are the positions of ions,r i are the variables that describe the position of the electrons and

the HamiltonianH is defined as follows:

H = Tn +Te+Vmn+Vne+Uee (2.2)

HereTn andTe represent the kinetic energy operators for the nuclei and electrons respectively.

Tn = −∑
I

h̄2

2MI
∇RI

2 ; Te = −∑
i

h̄2

2me
∇r i

2 (2.3)

mI - mass of ions andme- mass of electrons.

Vmn represents the repulsive interaction between two ions positioned atRI andRJ.

Vmn =
ZI ZJe2

|RI −RJ|
(2.4)

Vne represents the attractive interaction between an ion atRI and an electron atr

Vne = −
ZI e2

|RI − r|
(2.5)

Vee is the repulsive interaction between two electrons atr i andr j respectively.

Vee=
e2

r i − r j
(2.6)

The above described Hamiltonian though exact in nature, is impossible to solveas many degrees of

freedom are involved. This calls for the need for approximation.

2.1.2 The Born Oppenheimer Approximation

Since the nuclei are massive in size as compared to the electrons, we can consider the ions to move

slowly in space and the electrons responding instantaneously to its motion. Hence the motion of the

ions and electrons can be separated and this is what is implied by Born-Oppenheimer approximation

[1]. This can be mathematically formulated as :

Ψ(RI , r i , t) = ΣnΘn(R, t)Φn(R, r) (2.7)
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hereΘ(R, t) describes the evolution of the nuclear sub-system andΦ(R, r) are the electronic eigen-

states which satisfy the time-independent Schrodinger equation, given by:

heΦ(R, r) = En(R)Φn(R, r) (2.8)

where the electronic Hamiltonian

he = Te+Vne+Uee= H −Tn−Vmn (2.9)

Hence, to summarize, within this approximation, theΨ would have an explicit dependence on the

electronic degrees of freedom and the nuclei may be considered frozen in space.

2.1.3 The electronic problem and the one electron picture

If one can solve the Schrodinger equation to obtain the wave functionΦ(R, r), then this wave function

can in turn be used to calculate various properties of the system. But the main problem that one faces is

the difficulty in solving the Schrodinger equation. Exact analytical solution of the Schrodinger equation

has been obtained for very few simple systems. On the other hand, the main difficulty with numerical

solutions comes from the number of variables that one needs to handle. There are 3N variable for a

wavefunctionΨ(r1, r2, ....rN). Hence, a full specification of a single wave-function of neutral Fe is a

function of seventy-eight variables. If we want to tabulate (in a rather crude way) this function at 10

different values, the full tabulation would require 1078 entries. Undertaking such a huge calculation is

rather impossible. One therefore needs to resort to further approximations. Two different classes of

approximations/methods are carried out in this direction.

One class of methods is the wave-function based formalism, as proposed byHartree and Hartree-

Fock [2]. In the Hartree method, the basic assumption is that the many-electron wave-function can

be written as a product of one electron orbitals. On the other hand in the Hartree-Fock formalism a

comparatively more complicated wave-function obeying the Pauli’s exclusionprinciple is employed.

In both these methods, the energy E, given by:
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Ẽ =< Ψ̃|H|Ψ̃ > (2.10)

is variationally minimized using the corresponding wave-functions.

In the second approach the properties of many-electron system are assumed to be determined

using the spatially dependent electronic densities. One of the earliest tractable density functional

schemes for solving the many-electron problem was proposed by Thomas and Fermi(1927) [3] prior to

Hartree(1928) and Hartree-Fock(1930) theories. In this model, the electron density of non-interacting

homogeneous gas is the central variable. But it suffered from variousdrawbacks. The largest source

of error was in the representation of kinetic energy, followed by the errors in exchange energy, and

the error incorporated due to the complete neglect of electron correlation.It did not predict bonding

between atoms, so molecules and solids cannot form in this theory.

Much later, in 1964 Hohenberg and Kohn [4] proved that it was indeed possible to develop an exact

theory for many particle systems in terms of ground state single particle density alone. They proposed

two remarkably strong theorems:

Theorem1 : There is a one-to-one correspondence between the ground state density of a N electron

system and the external potential acting on it.

Theorem2 : The density that minimizes the total energy is the exact ground statedensity.

But, the Hohenberg-Kohn theorems did not offer a way of computing ground state density of a

system in practice. This was done a year later by Kohn and Sham (1965) [5]. Their formulation centres

on mapping the interacting system with real potentials onto a fictitious system whereby the electrons

move with in an effective single particle potential.

The mathematical details are presented in the following.

The one-body electron-ion interaction term "Vne"can be written as follows:

=
∫

Ψ⋆(r1, r2, ......, rN)ΣiV(r i)Ψ(r1, r2, ....rN)dr1dr2.....drN (2.11)
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= N
∫

dr1V(r1)
∫

Ψ⋆(r1, r2, .....rN)Ψ(r1, r2, ....., rN)dr2dr3....drN (2.12)

HenceVne = 〈Ψ |ΣiV(r i) |Ψ〉 =
∫

d3rV (r)ρ(r)

whereρ(r) is the probability density for finding an electron in a small volumed3r around the point

r and is mathematically represented as:

ρ(r1) = N
∫

Ψ⋆(r1, r2, ...rN)Ψ(r1, r2, ...rN)dr2.....drN (2.13)

Similarly, the two body potential term, i.e, the electron-electron repulsion term can be written as

follows:

Vee=

〈

Ψ
∣

∣

∣

∣

1
2

Σi j
1
r i j

∣

∣

∣

∣

Ψ
〉

=
1
2

∫

d3r1d3r2Γ(r1, r2)/r12 (2.14)

whereΓ(r1, r2) is the joint probability of finding one electron in a volumed3r1 aroundr1 and

another ind3r2 at r2, and is mathematically represented as:

Γ(r1, r2) = N(N−1)
∫

Ψ⋆(r1, r2, ...rN)Ψ(r1, r2, ......rN)d3r3......d
3rN (2.15)

The kinetic energy term that involves differential operator can be written as :

T = −

〈

Ψ
∣

∣

∣

∣

1
2

Σi∇2
i

∣

∣

∣

∣

Ψ
〉

(2.16)

= −
N
2

∫

Ψ⋆(r1, r2, ...., rN)∇2
1Ψ(r1, r2, ....rN)d3r1d3r2.......d

3rN (2.17)

= −
N
2

∫

[∇2
1Ψ⋆(r ′1, ....., rN)Ψ(r1, ......rN)]r1=r ′1

d3r1.......d
3rN (2.18)

= −
1
2

∫

d3r1[∇2
1γ(r1, r

′
1)]r1=r ′1

(2.19)

Hereγ(r1, r ′1) is the first order reduced density matrix, defines as :
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γ(r1, r
′
1) = N

∫

Ψ⋆(r
′
1, r2, ...., rN)Ψ(r1, r2, ...., rN)d3r2.....d

3rN (2.20)

The total energy can be expressed in terms of the reduced density matrices:

E[ρ,γ,Γ] = T[γ(r1, r
′
1)]+Vne[ρ(r)]+Vee[Γ(r1, r2)]+Vmn (2.21)

Which leads to the possibility of developing a quantum mechanics of a many electron system in

terms of the reduced density matrices bypassing the wave-function. This problem has to be solved

by imposing necessary and sufficient conditions onγ(r1, r ′1) and Γ(r1, r2), which are unfortunately

not known.The conditions onρ(r) are however known. The theory as reformulated by Levy(1982)

[6] demands that the ground state density (ρ(r)) is non-negative and is obtained from antisymmetric

wave-function and it satisfies the condition :

∫

ρ(r)dr = N (2.22)

This is known as the N-representability problem. This makes the single particle density a promising

candidate for the formulation of quantum mechanics.

Mathematical proof of Hohenberg Kohn Theorem : Consider the ground states of two N-

electron systems characterized by two external potentialsv1(r) andv2(r) with the corresponding Hamil-

tonians and the Schrodinger equations given by :

H1 = T +U +Σiv1(r i) (2.23)

H2 = T +U +Σiv2(r i) (2.24)

Here:

T = −
1
2

ΣN
i=1∇2

i (2.25)

and
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U =
1
2

Σi.6=. j
1
r i j

(2.26)

Hence,H1 andH2 operating respectively onΨ1 andΨ2 yield the energy eigen-valuesE1 andE2

respectively as given by :

H1Ψ1 = E1Ψ1 (2.27)

and

H2Ψ2 = E2Ψ2 (2.28)

We assume that the two wave-functions yield the same density via the equation:

ρ(r1) = N
∫

Ψ⋆
1/2(r1, r2....rN)Ψ1/2(r1, r2, ....rN)dr2dr3...drN (2.29)

One can use the variational principle and write the energy :

E1 = 〈Ψ1 |H1 |Ψ1〉 (2.30)

<〈Ψ2 |H1 |Ψ2〉 = 〈Ψ2 |H2 |Ψ2〉+ 〈Ψ2 |H1−H2 |Ψ2〉 (2.31)

Hence,

E1 < E2 +
∫

drρ(r)[v1(r)−v2(r)] (2.32)

On interchanging suffixes :

E2 < E1 +
∫

drρ(r)[v2(r)−v1(r)] (2.33)

Summation of the inequalities leads to the contradiction:

E1 +E2 < E2 +E1 (2.34)
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Hence, the assumption of identical density arising from two different external potentials is wrong

and a givenρ(r) can correspond to only onev(r). Now, sincev(r) is fixed, the Hamiltonian and hence

the wavefunction are fixed by the density. The wave-function being a functional of density, the energy

functional for a given external potentialv(r) is a unique functional of density. This functional assumes

a minimum value for the true density.

Kohn Sham Equation : The minimization ofEv[ρ] subject to the constraint of normalized density

:

ρ(r)dr = N (2.35)

leads to the Euler equation for the direct calculation of density :

δ [Ev[ρ]−µ[
∫

ρ(r)dr−N]] = 0 (2.36)

δE
δρ

−µ = 0⇒ µ =
δE
δρ

= v(r)+
δF
δρ

(2.37)

The crux of the problem is to obtain an expression for the energy functional in terms of density

which has the general form :

Ev[ρ] =
∫

v(r)ρ(r)dr +F[ρ] (2.38)

Comparing with the energy functional in terms of the reduced density matrices :

Ev[ρ,γ,Γ] = T[γ]+
∫

v(r)ρ(r)dr +
1
2

∫ ∫ Γ(r1, r2)

r12
dr1dr2 (2.39)

and using the decomposition :

Γ(r1, r2) = ρ(r1)ρ(r2)[1− f (r1, r2)] (2.40)
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where f (r1, r2) is the correlation functional, one can separate out from the electron-electron repul-

sion termVee[ρ], the Hartree contribution:

EH [ρ] =
1
2

∫ ∫ ρ(r1)ρ(r2)

r12
dr1dr2 (2.41)

The exact kinetic energy functionalT[ρ] is usually replaced by the kinetic energy of a system of non-

interacting particles,T0[ρ] and the contributionVee[ρ]−EH [ρ] together withT[ρ]−T0[ρ] constitute

what is known as the exchange-correlation(XC) energy functionalEXC[ρ]. This is unknown. Thus one

can write:

EV [ρ] = T0[ρ]+
∫

v(r)ρ(r)dr +EH [ρ]+{T −T0(ρ)+Vee−EH [ρ]} (2.42)

= T0[ρ]+
∫

v(r)ρ(r)dr +EH [ρ]+EXC[ρ] (2.43)

The scheme for obtaining the non-interacting kinetic energy functionalT0[ρ] for a certainρ(r) is

through the solution of the one particle Schrodinger equation:

[

−
1
2

∇2 +λ (r)

]

Ψi = εiΨi (2.44)

For a suitably chosenλ (r) such that the resulting orbitals yield the density as:

ρ(r) = ∑
i

|Ψi |
2 (2.45)

And then evaluating the functional as:

T0[ρ] = ∑
i

εi −
∫

drλ (r)ρ(r) (2.46)

The energy functional that is to be minimized for determining the correct equilibrium density is then

given by:

EV [ρ] = ∑
i

εi −
∫

drλ (r)ρ(r)+
∫

v(r)ρ(r)dr +EH [ρ]+EXC[ρ] (2.47)

which leads to the variational condition:

δEV [ρ] = 0 (2.48)

= ∑
i

δεi −
∫

drδλ (r)ρ(r)+
∫

drδρ(r)

[

−λ (r)+v(r)+
δEH

δρ(r)
+

δEXC

δρ(r)

]

(2.49)
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Now since :

εi = −

〈

Ψi

∣

∣

∣

∣

1
2

∇2
i

∣

∣

∣

∣

Ψi

〉

+ 〈Ψi |λ (r) |Ψi〉 (2.50)

One has:

δεi = −

〈

δΨi

∣

∣

∣

∣

1
2

∇2
i

∣

∣

∣

∣

Ψi

〉

+ 〈δΨi |λ (r) |Ψi〉+c.c.+ 〈Ψi |δλ (r) |Ψi〉 (2.51)

= εiδ 〈Ψi |Ψi〉(= 0)+ 〈Ψi |δλ (r) |Ψi〉 (2.52)

And hence the result:

∑
i

δεi =
∫

drρ(r)δλ (r) (2.53)

which in combination with variational condition leads to the result:

δEV [ρ] = 0 =
∫

drρ(r)

[

−λ (r)+v(r)+
δEH

δρ(r)
+

EXC

δρ(r)

]

(2.54)

Since the variation inδρ(r) is arbitrary:

λ (r) = v(r)+
δEH

δρ(r)
+

δEXC

δρ(r)
(2.55)

This clearly shows that if one choosesλ (r) given by this expression, the single particle Schrodinger

equation leads to the correct density for the system. This provide the basis for Kohn-Sham density

functional scheme which involves the solution of the followingN such differential equation:

[

−
1
2

∇2 +Ve f f(r;ρ)

]

Ψi = εiΨi (2.56)

With the effective potential given by:

Ve f f(r) = V(R)+
∫ ρ(r ′)

|r − r ′|
dr +

δEXC

δρ(r)
(2.57)

And the density is calculated as:

ρ(r) = ∑
i

|Ψ|2 (2.58)

The energy functional in this theory is calculated as:

EV [ρ] = ∑
i

εi −
1
2

∫ ∫ ρ(r)ρ(r ′)
|r − r ′|

drdr′ +EXC[ρ]−
∫

drρ(r)
δEXC

δρ(r)
(2.59)
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2.1.4 Exchange correlation

Apart from the exchange-correlation termEXC, all other terms in the many body Hamiltonian can be

exactly determined in terms of the single particle density. But before we delve further into the various

ways of obtaining a good approximate value of this functional, it would be worthwhile to discuss as to

what exchange and correlation physically mean.

To understand exchange, let us imagine that there is a up-spin electron atr0. Pauli’s exclusion

principle forbids the presence of electrons with spin up at the same position co-ordinater0 (see Fig.

2.1), whereas a down spin electron is free to sit there. This function can be calculated exactly, although

it involves calculation of expensive integrals. In the Hartree-Fock scheme, which employs a many-body

wave-function of the Slater determinant form, the exchange energy is calculated exactly. But here the

correlation energy is completely neglected.

(a) (b)

Figure 2.1 According to Pauli’s exclusion principle, the situation as showed in figure (a),
where two electrons of the same spin occupies the same quantum state is not allowed.
Whereas, as shown in (b), two electrons of opposite spin are allowed to occupy the same
quantum state.

Correlation, on the other hand is representative of the exclusion zone that an electron creates around

itself, where it discourages the presence any other electron(see Fig. 2.2). The origin of this correlation

energy is completely coulombic. In general this exclusion zone, which is alsoknown as a correlation

hole is not generally spherically symmetric, unless for homogeneous jellium model.

Now, since correlation can not be calculated exactly, one has to resort toapproximate forms. The

exchange part which can otherwise be calculated accurately is also approximated with an expectation

that it would be able compensate for any error that might have crept in because of approximating the

correlation term. Hence, one looks for an approximation for the sum of the two termsEX +EC = EXC,

where both exchange and correlation are treated on the same level of accuracy and approximation.
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Figure 2.2 The black dots in the figure represent the sea of electrons in a piece of material,
the shaded(pink) area described around one such black dot is a pictorial representation of the
exclusion zone that is created around an electron due to electron-electron correlation.

There are many approximate models available for this purpose. Two of the most common are the

local density approximation and the generalized gradient approximation.

2.1.4.1 Local density approximation

This is one of the most widely used approximation for estimating the exchange-correlation energy. It

was proposed by Kohn and Sham in their 1965 paper [5], although the very idea existed primarily

in the theory by Thomas-Fermi-Dirac [7]. The main idea employed here is to consider a generally

inhomogeneous electron gas to be locally homogeneous and use the exchange-correlation hole for the

homogeneous electron gas, which can be calculated to a very high degreeof accuracy. One can now

write the exchange-correlation energy as the average of an energy density εLDA
XC [ρ]

ẼLDA
XC =

∫

ρ(r)ε̃LDA
XC [ρ(r)]dr (2.60)

whereε̃LDA
XC [ρ] = εLDA

X [ρ]+ εLDA
C [ρ]

The exchange energy is exactly given by Dirac’s expression:
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εX[ρ] = −
3
4
(

3
π

)
1/3

ρ1/3 = −
3
4
(

9
4π2)

1/3 1
rs

= −
0.458

rs
a.u. (2.61)

Herers = (3/4πρ)1/3 and is the mean inter-nuclear distance.

There are many good approximations for correlation that have been proposed. The most accurate

results are given by quantum Monte-Carlo simulations by Ceperly and Alder(1980)[8]. This corre-

lation functional as obtained by Ceperly and Alder is exact within numerical accuracy and has been

parametrized by Perdew and Zunger(1981)[9].

For dealing with magnetic systems, the LDA is extended to a spin-polarized system, and is named

as the local spin density approximation(LSDA). Here the exchange correlation energy density is written

in terms of the upρ↑(r) and downρ↓(r) spin densities.

ELSDA
XC [ρ↑(r),ρ↓(r)] =

∫

[ρ↑(r)+ρ↓(r)]εXC[ρ↑(r),ρ↓(r)]dr (2.62)

Although, LDA apparently seems to be a huge and drastic approximation as compared to the real

systems of interest, but it is known to be very successful and has been shown to produce robust and

consistent results in a variety of systems. The main reason behind it lies in the fact that the exchange-

correlation energy does not depend on the shape, but the size of the exchange correlation hole, i.e,

the spherical average of the hole. Furthermore, LDA satisfies the sum rule, wherein the exchange-

correlation hole contains exactly one displaced electron.

LDA gives best estimates of various properties when the electronic densities are close to homogene-

ity. It tends to overestimate the binding energy of molecules and the cohesiveenergy of solids, but the

trends shown are very good. LDA is able to reproduce well the bond length, bond angle and vibrational

frequencies with small deviations. In general LDA overbinds and hencebond lengths are underesti-

mated. Elastic constants and phonon frequencies are also well reproduced with some underestimation.

Dielectric constants and piezoelectric co-efficients are generally over-estimated.

2.1.4.2 Generalized Gradient Approximation(GGA)

In the generalized gradient approximation, the functional depends on thedensity and its gradient.
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EGGA
XC [ρ] =

∫

ρ(r)εXC(ρ(r), |∇ρ(r)|)dr (2.63)

Several GGA functionals like Perdew-Wang 1991 [10] and Perdew, Burke and Ernzerhof [PBE]

[11] are the most popular. In comparison to LDA, GGA’s tend to improve totalenergies, atomization

energies, energy barriers and structural energy differences [11]. GGA expands and softens bands, an

effect that sometimes corrects and sometimes over-corrects the LDA prediction.

2.1.5 Basis set

Basis sets are the foundation of modern electronic structure theory. In order to solve the eigenvalue

problem as already stated, the eigenstatesΦi , which are the single particle wave-functions, must be

expanded in terms of any converged basis set. Depending on the choice of basis functions, different

schemes can be broadly grouped into two categories:

(i)Fixed basis set method : The wave-function is determined as an expansion in some set of fixed

basis functions, like linear combination of atomic orbitals(LCAO)[12], plane waves, Gaussian orbitals

etc. Here one has to solve the eigenvalue problem:

(H − εO).b = 0 (2.64)

involving the Hamiltonian H and overlap matrix O, to determine the eigenvaluesε and the expan-

sion coefficients b.

This method is computationally simple but the disadvantage is that the basis set may be large to be

reasonably complete.

Most of the fixed basis set uses pseudopotential for the electron-ion interaction, where localized

core states are removed by replacing the strong crystalline potential by a weak pseudopotential, while

giving faithful determination of the valence and conduction bands. Pseudopotential in conjunction

with plane wave basis has become one of the most versatile and efficient approaches for calculating

electronic properties.
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(ii)Partial Wave method : The wave-function is expanded in a set of energy and potential dependent

partial waves like the cellular method [13], the augmented plane wave method [14] and the Korringa-

Kohn-Rostoker method [15]. One has to solve set of equations of the form :

M(ε).b = 0 (2.65)

In contrast to Eqn.2.64 which is a polynomial inε, the Eqn.2.65 has a complicated non-linear

energy dependence. We have no a priori idea how many roots we expect, nor whether all roots are

physically permissible. The partial wave methods though complicated to solve, do have advantages.

Firstly, they provide solutions of arbitrary accuracy for a muffin-tin potential and for closed packed

systems, this makes them far more accurate than the traditional fixed basis methods. Secondly, the

information about the potential enters only via a few functions of energy. However as already stated, it

has the disadvantage of being computationally heavy, the eigen energyε j must be found individually

by tracing the roots of the determinant ofM as a function ofε. To overcome this, Andersen (1975) first

proposed a unified approach for linear methods [25] such as linear augmented plane wave (LAPW)

and linear muffin-tin orbital (LMTO) methods which are the linearized versions of APW and KKR

methods, respectively. These methods therefore lead to secular equationslike Eqn.2.64 rather than

Eqn.2.65 and combine the desirable features of the fixed basis and partial wave methods.

In this thesis, we use pseudopotential method along with plane wave basis, asimplemented in

the Vienna ab initio simulation package (VASP) [26], to obtain very accurate total energies for various

systems. We have also extensively used the LMTO method to investigate electronic structure properties

of the systems studied. Therefore, in the following two subsections, we discuss the pseudopotential

method and LMTO method in greater details.

2.1.5.1 Pseudopotential Method

In solving the Schrodinger equation for condensed aggregates of atoms, space can be divided into

two regions, with quite different properties. The regions near the nuclei,called the core region, are

composed primarily of tightly bound core electrons, whose wave-functionsare well localized, while the
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remaining volume contains the valence electrons which are involved in the binding together of atoms.

These valence electrons may be found with appreciable probability in the interstitial regions, where

their wave-functions can be described with a few number of plane waves.But the main problem with

describing the valence electronic wave-function with a small number plane waves is that this would

fail badly in reproducing the highly oscillating behavior of these valence wave-functions near the core

region. These heavy oscillations occur because the valence wavefunctions are orthogonal to those of

the core, which produces a large kinetic energy for the valence electrons in the core regions. In order

to solve this problem, Herring in 1940 [18] proposed the Orthogonalized plane wave [OPW] method,

where he constructed valence wave functions from a linear combination ofplane waves and core states

such that they were orthogonalized to the core. The pseudopotential method, which will be discussed

in details here originated from of this OPW method. Here, going a step ahead,the core states were

altogether eliminated, by replacing their action by an effective potential calledthe pseudopotential. It

needs to be constructed carefully, so that it is able to reproduce the bonding properties of the actual

potential accurately.

In the following, we will develop the basic concept of OPW method followed bythe pseudopoten-

tial method for an atom where core and valence states are denoted by the subscriptc andv respectively.

The orthogonalized plane wave can be represented as follows:

φk = eik.r +ΣcbcΨc
k(r) (2.66)

constantbc is determined by requiringφk be orthogonal to the core:

∫

drΨc⋆
k (r)φk(r) = 0 (2.67)

Hence, the wave function for the system may written as a linear combination of the OPWs:

Ψk = Σkckφk+K (2.68)

By explicit construction, the wave-functions are made orthonormal to the core and hence it also
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has the expected rapid oscillations at the core. Moreover, this wave-function is plane wave like in

the interstitial region where the contribution from second term of Eqn 2.66, involving the core wave

functionΨc
k, has very little contribution.

This gives, a very basic idea of OPWs. With this background, will go further and develop the

pseudopotential method. Letφ v
k be the plane wave part of the wave-function :

φ v
k(r) = ΣkCke

i(k+K).r (2.69)

Hence, using Eqn.2.66, we can write :

Ψv
k(r) = φ v

k(r)−Σc(
∫

dr′Ψc⋆
k (r ′)φ v

k(r ′))Ψc
k(r) (2.70)

SinceΨv
k is an exact valence wavefunction, it should satisfy the Schrodinger equation:

HΨv
k = εv

kΨv
k (2.71)

Substituting Eqn.2.70 in Eqn.2.71 and using

HΨc
k = εc

kΨc
k (2.72)

and

VRΨ = Σc(εv
k − εc

k)(
∫

dr′Ψc⋆
k Ψ)Ψc

k (2.73)

we obtain :

(H +VR)φ v
k = εv

kφ v
k (2.74)

which leads to a Schrodinger equation satisfied byφ v
k

The pseudopotential is defined as :

H +VR = −
h̄2

2m
V2 +V pseudo (2.75)
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Figure 2.3 An illustration of the full all-electron wave-function and the electronic poten-
tial(solid lines) plotted against distance r, from the atomic nucleus. The corresponding
pseudo-wavefunction and the potential is plotted in dotted lines. Outside a given radiusrc,
the all-electron and the pseudo-electron values match. This figure is adapted from [21].

The pseudo-potential represents a weak attractive potential, as is obtainedby a balance between the

attractive potential and the repulsive potentialVR, as shown in Fig.2.3. The new statesφ v obey a single-

particle equation with a modified potential, but have the same eigenvalues as the original valence state

Ψv and are called pseudo-wavefunctions. These new valence states project out of the valence wave-

functions any overlap they have with the core wavefunctions, thereby having zero overlap with the core

states. In other words, through the pseudopotential formulation, we havecreated a new set of valence

states, which experience a weaker potential near the atomic nucleus, but the proper ionic potential

away from the core region, beyond a certain cut-off radiusrc. Since it is this region in which the va-
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lence electrons interact to form bonds that hold the solid together, the pseudo-wavefunctions preserve

all the important physics relevant to the behaviour of the solid. Since then several methods have been

used to generate more accurate as well as more efficient pseudo-potentials, keeping the basic principles

same. In norm-conserving pseudopotential [24], the all electron (AE) wave function is replaced by a

soft nodeless pseudo (PS) wave function, with the restriction to the PS wave function that within the

chosen core radius the norm of the PS wave function has to be the same with the AE wave function and

outside the core radius both the wave functions are just identical. Good transferability of constructed

pseudopotential requires a core radius around the outermost maximum of the AE wavefunction, be-

cause only then the charge distribution and moments of the AE wavefunctions are well produced by the

PS wavefunctions. Therefore, for elements with strongly localized orbitalslike first-row, 3d and rare-

earth elements, the resulting pseudopotentials require a large plane-wave basis set. To work around

this, compromises are often made by increasing the core radius significantly beyond the outermost

maximum in the AE wave-function. But this is usually not a satisfactory solution because the trans-

ferability is always adversely affected when the core radius is increased, and for any new chemical

environment, additional tests are required to establish the reliability of such soft PS potentials. This

was improved by Vanderbilt [25], where the norm-conservation constraint was relaxed and localized

atom centered augmentation charges were introduced to make up the chargedeficit. These augmen-

tation charges are defined as the charge density difference between theAE and the PS wavefunction,

but for convenience, they are pseudized to allow an efficient treatment of the augmentation charges on

a regular grid. Only for the augmentation charges, a small cutoff radius must be used to restore the

moments and the charge distribution of the AE wavefunction accurately. The success of this approach

is partly hampered by rather difficult construction of the pseudopotential. Later Blöchl [22] developed

the projector-augmented- wave (PAW) method, which combines idea from theLAPW method with

the plane wave pseudopotential approach, which turns out to be computationally elegant, transferable

and accurate method for electronic structure calculation of transition metals and oxides. This approach

retains the all-electron character, but it uses a decomposition of the all-electron wavefunction in terms

smooth pseudo-wave function and a rapidly varying contribution localized within the core region.
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|Ψn
AE >= |Ψn

PS> +ΣP
I=1Σl ,mΣi(|ΦiIlm

AE > −|ΦiIlm
PS >< p̃i

Ilm|Ψn
PS> (2.76)

where,ΦiIlm
AE (r) are the all-electron partial waves centered at atom I obtained for a reference atom,

andΦiIlm
PS (r) are the pseudo-atomic partial waves that coincide with the all-electron one outside a cut-off

radius and match continuously inside. The projector functions verify the relation
〈

p̃i
Ilm

∣

∣

∣
Φ jIlm

PS

〉

= δi j .

The sums run over all the atomic sites I, angular momentum(l,m) and projector functions i. For a

single projector this is basically a OPW method. Using the above expression for the wave function, the

orthogonality relation of the projectors and pseudoatomic partial waves, splits the electronic density

naturally into three disjoint contributions : a soft pseudo-charge density arising from Ψn
PS(r), and

two localized charge densities involvingΦiIlm
AE (r) andΦiIlm

PS (r) respectively. Similar partitions can be

obtained for potential and energy[23] . All the expressions involving thepseudized quantities are

evaluated on a Cartesian grid using plane waves, while the expressions involving localized quantities are

evaluated using radial grids. No cross terms appear which might require both the grids. Furthermore,

although it is strictly not necessary, the PAW method freezes the core orbitals to those of a reference

configuration and works only with valence wave functions, exactly as the pseudized method. Therefore,

all the psedopotential machinery is available for the PAW method, which just has to be supplemented

with contributions from spherical regions.

2.1.5.2 Linear Muffin-Tin Orbital (LMTO) method

The LMTO method is based on the muffin-tin approximation. Here the potential is assumed to be

spherically symmetric (close to the ion core), within a sphere of a certain radiusSR, centered around the

ion cores, called the muffin-tin sphere. In the interstitial regions, i.e, in the rest of the space, the potential

varies very slowly and hence is replaced by a constant average potential(Fig. 2.4). Mathematically, this

MT potential can be represented as :

v(r −R) =











v(rR) for rR ≤ SR; rR = |r −R|

−v0 for rR > SR

(2.77)



2.1 Electronic structure calculation 33

Figure 2.4 Construction of Muffin Tin(MT) potential. Exact implies the actual potential as
is occurs close to the ion cores(marked in the figure). The MT potentials, which arises from
the muffin-tin approximation has also been marked in the figure.

Within the MT sphere, the potential is spherically symmetric, hence they are solutions of the radial

equation:

[

d2

dr2
R

−v(r)+
l(l +1)

r2
R

− ε
]

rRφRL(rR,ε) = 0 (2.78)

Outside the MT sphere, since the potential is constant,v(rR) =−v0, the wave-function is a solution

of the following Schrodinger equation:

[

d2

dr2
R

+
l(l +1)

r2
R

−κ2
]

rRφRL(rR,ε) = 0 (2.79)

whereκ2 = ε −v0

The wave-functions in the interstitial region, where the potential is constantare plane waves, which

can be expanded in spherical Bessel and Neumann functions.

ARl(ε,κ) j l (κrR)+BRl(ε,κ)ηl κrR) (2.80)

The partial wave solution in all space is given by:
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φRL(Rr ,ε) =











N0
RL(ε,κ)φRL(rR,ε) if rR ≤ SR

ηl (κrR)+P0
RL(ε,κ) j l (κrR) if rR > SR

(2.81)

But, we would like the basis to be such that its head contains all information about the potential,

while its tail contains information only about the constant potential outside the MTsphere. In addition

the basis should be well behaved in all space. A way of doing this is the following:

φRL(Rr ,ε) =











N0
RL(ε,κ)φRL(rR,ε)+P0

RL(ε,κ) j l (κrR) if rR ≤ SR

ηl (κrR) if rR > SR

(2.82)

They qualify as suitable basis for representation of the wave function in allspace.

If we consider an array of ion-cores, with intervening interstitials, the wave-function for the system

would simply be a linear combination of the MT orbitals associated with the individual MT potentials

centered at different R.

Ψ(r,ε) = ΣRΣLCRL(ε)χRL(r −R,ε) (2.83)

The expression for the tails of the Neumann functionηl (κrR) outside its personal sphere is taken

to be as:

ηl (κrR) = −ΣL′S0
RL,R′L′(κ) j l ′(κr ′R) (2.84)

S0
RL,R′L′(k) are canonical structure constants depending on the relative position of Rand R’ and

independent of ion-core potentials.

Referring to Fig.2.5, the wave function can be written as :
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Figure 2.5The envelope of a MTO centered at R with its head in its own sphere at the centre
and tails in the neighbouring two sphere.

χRL(r −R,ε) =



















































[N0
RL(ε,κ)φRL(rR,ε)+P0

RL(ε,κ) j l (κrR)]YL(rR) if rR ≤ SR

−∑L′ j l ′(κrR′)S0
R′L′,RL(κ)YL(rR) if rR′ ≤ SR′

−∑L′ j l ′(κrR′′)S0
R′′L′,RL(κ)YL(rR) if rR′′ ≤ SR′′

...........................

ηl (κrR)YL(rR) if rR ∈ interstitial

(2.85)

Considering,

||ΨR > to represent functions defined in all space,

|ΨR > to represent functions are all zero outside personal sphere, and

#ΨR > to represent functions that are non-zero only in the interstitial space, one can write :

||χR(ε) >= N0
R(ε)|φR(ε) > +P0

R(ε,κ)| jR(κ) > −ΣR′S0
RR′(κ)| j ′R(κ) > +#ηR(κ) > (2.86)

This was for a single MT sphere, considering a linear combination of all MTs, the total wavefunc-

tion can be written as :

||Ψ(ε) >= ΣRC+
R (ε)||χR(ε) > (2.87)
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Confining ourselves to a singles MT sphere centered atR0, the potential seen by an electron in

the solid is identical to that in the single MT potential atR0. Hence, the solution to the Schrodinger

equation of the electrons in solid within the MT sphere, i.e,rR0 < SR0 is:

|Ψ(ε) >= C+
R0

(ε)N0
R0

(ε)|φR0(ε) > (2.88)

Substituting Eqn 2.86 into Eqn 2.87 and doing some further simplification:

|Ψ(ε) >= ΣRC+
R (ε)[N0

R0R(ε)|φR(ε) > +{P0
R0R(ε,κ)−S0

R0R(κ)}| jR(κ) >] (2.89)

Comparing equations 2.87 and 2.89, we see that the extra termP0
R0

(ε)| jR0(κ) > which was added

to the partial wave corresponding to the head is exactly cancelled by the contributions of the tail

S0
R0R(κ| jR(κ) > coming from all the other MT spheres. Hence,

C+N0(ε)−1[P0(ε,κ)−S0(κ)] = 0 (2.90)

where,N0(ε) = N0
R0R(ε), P0(ε,κ) = P0

R0R(ε,κ) andS0
R0R(κ) = S0(κ). The above equation forms a

set of linear equations in unknownsCRL(ε).

This leads to the set of KKR equations :

det||P0(ε,κ)−S0(κ)|| = 0 (2.91)

Using which one can determine the eigenvaluesε.

It was desirable that one bypasses this energy dependence of the KKRequation. Hence, Andersen

[25] devised a way for linearizing these equations. The energy dependent solution of the Schrodinger

equation inside a MT sphere can be expanded as a Taylor series about some energyεν
RL

in our range of

interest.

|φRL(ε) >= |φRL(εν) > +(ε − εν
RL)|φ̇RL(εν

RL) > +O((ε − εν
RL)

2) (2.92)

We define two functions :
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|Φ(ε) >= N0(ε)(N0)−1|φ(ε) > (2.93)

|Φ̇(ε) >= N0(ε)(N0)−1|φ̇(ε) > +Ṅ0(ε)(N0)−1|φ(ε) > (2.94)

Andersen’s method was to build a linearized MT orbitals by taking Neumann function at a fixed

value ofκ and replacing the head by a linear combination of functions|φR > andφ̇R . In addition, the

tails of the LMTO in the other spheres are replaced by|φ̇R′ > associated with these spheres centered at

R.

Hence, the basis function can be written as :

||χR >= ||ηR > +|φR > +ΣR′hRR′ |φ̇R′ > −|ηR > (2.95)

= |φR > +ΣR′hRR′ |φ̇R′ > +#ηR > (2.96)

The notations| >, || > and #> have already been discussed before.

The secular equation follows directly from variational treatment of the Hamiltonian representation

as in any fixed basis set method.

||εI −H|| = 0 (2.97)

Expanding the potential term about the reference energy :

P0(ε) = P0 +(εI − εν)Ṗ0 (2.98)

SinceṖ is totally diagonal, the matrix(Ṗ0)1/2 is also totally diagonal. Substituting the expansion

in Eqn. ,

det[(P0)1/2]||P0(Ṗ0)−1 + εI − εν − (Ṗ0)−1/2S0(Ṗ0)−1/2||det[(P0)1/2] = 0 (2.99)
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if det[(P0)1/2] 6= 0 then

det||P0(Ṗ0)−1 + εI − εν − (Ṗ0)1/2S0(Ṗ0)1/2|| = 0 (2.100)

Comparing Eqn. 2.100 and Eqn. 2.97 :

H = C+∆1/2S∆1/2 (2.101)

whereC = −P0(Ṗ0)−1 and∆ = (Ṗ0)−1

This linearized method of the MTO is quite popular because it is fast.

2.1.6 LDA+U method, missing correlation effect

Electron-electron correlation effects have been treated in an average way in the local-spin density ap-

proximation (LSDA)[4, 5] of the one-electron band theory. Although this assumption works well for

most of the materials, it fails in case of materials that contain narrow bands. Hence, in-spite of its many

successes, LSDA has been unable to correctly deal with strongly correlated materials. According to

band theory, a system containing an odd number of electrons will give riseto a partially filled band

at the Fermi-level and hence should be classified as a metal. Accordingly, band theory classifies ma-

terials like CoO and FeO which are otherwise known to be hard-core insulators as metals because of

odd number of electron in these systems. For such materials, a more accuratetreatment of the strong

correlation effect is required. In other words, one needs to repair LSDA.

As summarized by Anisimovet al in their 1997 review [24], there have been several attempts

improve LDA, in order to account for strong electron-electron correlations. One of the most popular

methods in the self-interaction correction(SIC) [25]. It reproduces quite well the localized nature of

the d (or f) transition(or rare earth) electrons. But SIC one-electron energies are in strong disagreement

with spectroscopic data.

The other method is the Hartree-Fock(HF) method [26], which contains a term that explicitly can-

cels self-interaction. However, a serious problem with HF method is that here the Coulomb interaction

considered is not screened.
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A much more successful method in describing highly correlated system is the Hubbard LSDA+U

method [27, 28, 29]. Here, the electrons are divided into two sub-systems, localized d(or f) electrons,

for which coulomb d-d interaction should be taken into account by a term:

1
2

UΣi 6= jnin j (2.102)

whereni are the d-orbital occupancy, and the delocalized s or p electrons which are well described

by the orbital independent one-electron potential as given by LDA.

Let us consider a system with fluctuating number of d-electrons. The total number of d-electrons

in the system is given by :

N = Σini (2.103)

Then, the Coulomb interaction energy between the d-electrons in given by:

E =
UN(N−1)

2
(2.104)

This should be subtracted from the LDA total energy and a Hubbard-like term should instead be

added:

E = ELDA−
UN(N−1)

2
+

1
2

UΣi 6= jnin j (2.105)

Then the orbital energies are given by:

εi =
∂E
∂ni

= εLDA +U(
1
2
−ni) (2.106)

This formula shifts the LDA orbital energy by(−U/2) for occupied orbital for whichni = 1 and

by (+U/2) for unoccupied orbital withni = 0 (Refer to Fig. 2.6).

The LDA+U orbital dependent potential gives upper and lower Hubbard bands with the energy

separation between them equal to the Coulomb parameter U. Hence this methodshelps qulitatively
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εLDA U/2+

LDAε

ε
LDA

U/2

ρ(ε)

Figure 2.6 The shifting of the occupied and unoccupied LDA orbitals with respect to each
other due to presence of the U parameter.

reproduce the correct physics and hence the insulating nature of systems with transition metal and even

number of electrons. Such systems are popularly known as Mott-Hubbardinsulators.

We have used rotationally invariant multi-band Hubbard model in our calculations. There are two

popular approaches in this regard. They are :

(i) The Lichtenstein method

This method was proposed by Lichtensteinet al in their 1995 paper [29]. It basically requires

identification of regions in space where the atomic characteristics of the electronic states are largely

satisfied. Within the atomic spheres one can expand wave-functions in a localized orthonormal basis

|inlmσ >, wherei denotes the site,n denotes the principal quantum number,l the orbital quantum

number,m the magnetic number andσ the spin index. Let us assume that a particular shell is partly

filled. A density matrix for correlated electrons in this shell is defined as follows :
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nσ
mm′ = −

1
π

∫

ImGσ
ilm,ilm′(E)dE (2.107)

where : Gilm′

ilm (E) =< ilmσ |(E−H ′)−1|ilm′σ > are the elements of the Green’s function matrix

in this localized representation andH is the effective single electron Hamiltonian. The integration is

carried over from 0 toEF , the Fermi energy. In terms of the elements of the density matrix{n}, we

define the generalized LDA+U functional as follows :

ELDA+U [ρσ (r),nσ ] = ELSDA[ρσ (r)+EU [{nσ}]−Edc[{nσ}] (2.108)

whereρσ (r) is the charge density for spin-σ electrons andELSDA[ρσ (r)] is the standard LSDA

functional. Eqn. 2.108 asserts that LSDA suffices in the absence of orbital polarizations, while the later

are described by the mean-field (Hartree-Fock) type of theory:

EU [{n}] =
1
2

Σ{m},σ{< m,m′′|Vee|m
′,m′′′ > nσ

mm′ ,n−σ
m”m′′′ (2.109)

+ (< m,m′′|Vee|m
′,m′′′ > − < m,m′′|Vee|m

′′′,m′ >)nσ
mm′ ,nσ

m′′m′′′}

whereVee are the screened Coulomb interactions among thenl electrons. The last term in Eqn.

2.108 corrects for double counting and is given by:

Edc[{nσ}] =
1
2

Un(n−1)−
1
2

J[n↑(n↑−1)+n↓(n↓(n↓−1)] (2.110)

wherenσ = Tr(nσ
mm′) andn = n↑ +n↓. U andJ are screened coulomb and exchange parameters.

The effective single-particle potential to be used in the effective single-particle HamiltonianH,

Vσ
mm′ = Σm” ,m′′′{< m,m” |Vee|m

′,m′′′ > n−σ
m”m′′′ +(< m,m” |Vee|m

′,m′′′ > (2.111)

− < m,m” |Vee|m
′′′,m′ >)nσ

m”m′′′}−U(n−
1
2
)+J(nσ −

1
2
)
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Here also, we claim that within the atomic spheres these interactions retain their atomic nature. The

matrix elements can be expressed in terms of complex spherical harmonics andeffective slater integral

[30].

(ii) The Dudarev method

The simplified (rotationally invariant) approach to LSDA+U as proposed by Dudarevet al [31] is

as follows : Taking into account the orbital degeneracy of the 3d electrons, the model Hamiltonian is

written by :

H =
U
2

Σm,m′,σ nm,σ nm′,−σ +
U −J

2
Σm6=m′,σ nm,σ nm′,σ ′ (2.112)

where the summation is performed over projections of the orbital momentum (m,m’ = -2, -1 ... 2

in case of d electrons).U andJ are the spherically averaged matrix elements of the screened Coulomb

and Exchange interactions.

Here the parametersU andJ do not enter separately, only the difference(U −J) is meaningful.

2.1.7 Calculation of properties using DFT

2.1.7.1 Density of states and band structure

Density of states(DOS) of a system describes the number of states per interval of energy level that

are available to be occupied by electrons. Unlike isolated systems, like atoms ormolecules in a gas

phase, the density distribution is not discrete but continuous for bulk materials. A high DOS at a

specific energy level means that there are many states available for occupation. A DOS of zero means

that no states can be occupied at that energy level. Partial density of states(PDOS) on the other hand

decomposes the total density of states into contributions due to different angular components (i.e, s-

like and p-like) for different atoms in the system. We have extensively usedthe total DOS and the

partial-DOS for analysis of our results.

The density of statesg(ε)dε for energies in the range[ε,ε + dε] is given by a sum over all states
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with energy in the range. In a crystal the expression for DOS is:

g(ε) =
1
Ω ∑

n,k

2δ (ε − ε(n)
k ) (2.113)

=
2

(2π)2 ∑
n

∫

(ε − ε(n)
k )dk (2.114)

=
1

(2π)3

∫

ε(n)
k =ε

1

|∇kε(n)
k |

dSk (2.115)

Band structure of a solid describes those ranges of energy, called energy bands, that an electron

within the solid may have("allowed bands") and ranges of energy called band gaps ("forbidden gaps")

where the electrons are not allowed. The concept of band comes from the celebrated band theory for

solids. A material’s band structure may be used to explain many physical properties of solids. In

addition, we have also plotted the ’fat bands’ which show the percentage contribution from a certain

orbital of a given atom to the different bands.

2.1.7.2 Total Energy

Very accurate total energies have been estimated using pseudopotential method and the plane wave

basis sets. These total energies are basically Kohn-Sham ground state energies and have been used

extensively in this thesis to determine lowest energy, most preferred stableconfiguration from a set of

possible configurations.

In plane wave calculations under periodic boundary condition, the actualsystem is infinitely peri-

odically repeated. The energy of such a system being infinite, the energyper cell is a quantity that is

well-defined and can be calculated through Kohn-Sham expression:

EKS[ρ] =
1

Ncell
(Te[ρ]+EH [ρ]+Eloc

PS +Eii +EXC[ρ]+Enl
PS) (2.116)

HereTe[ρ] represents the kinetic energy component,EH [ρ] represents the Hartree energy,Eii rep-

resents ion-ion interaction,Eloc
PS + Enl

PS represents electron-ion interaction, where the superscriptloc

andnl respectively refer to local and non-local parts of the pseudo-potential, EXC[ρ] represents the

exchange-correlation energy.
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Out of these,EH , Eloc
PS andEii are the three local electrostatic energy terms, the sum of which is

represented asEes. Hence,Ees can be mathematically expressed as follows:

EH [ρ]+Eloc
PS[ρ]+Eii =

1
2

∫ ∫ ρ(r)ρ(r ′)
|r − r ′|

drdr′ (2.117)

+ ΣNS
S=1ΣPS

I=1

∫

ρ(r)vloc,S
PS (|r −RI |dr

+
1
2

ΣP
I=1ΣP

J=1,J6=I
ZI ZJ

|RI −RJ|

where,ρ(r) is the electrostatic charge distribution,S labels different atomic species,NS number of

atoms with atomic species′S′, vloc,S
PS (r) represents the local componenent of the psedopotential corre-

sponding to that species, while long-distance behaviour is purely coulombic, ZI represents the valence

charge on ion core′I ′ andRI gives its location.

All three terms in Eqn. 2.117 diverge for an infinite system. However, sincethe total charge

distribution of valence electrons plus ionic cores is neutral, the electrostatic energy of a single cell

should be finite. In order to sort this problem, we consider a neutralizing, continuous auxillary charge

distributionρi(r) associated with the nuclear subsystem (and thus negative), and add andsubtract the

electrostatic self-interaction energy (as given below) of the system:

1
2

∫ ∫ ρi(r)ρi(r ′)
|r − r ′|

drdr′ (2.118)

After performing some algebra the electrostatic energy can be written as :

Ees[ρ] =
1
2

∫ ∫ ρT(r)
ρT(r ′)

drdr′ +ρ(r)(ΣPS
I=1vloc,S

PS (|r −RI |)−
∫ ρi(r ′)dr′

|r − r ′|
)dr (2.119)

+
1
2
(ΣP

I=1ΣP
J=1,J6=I

ZI ZJ

|RI −RJ|
−

∫ ∫ ρi(r)ρi(r ′)
|r − r ′|

drdr′)

where,ρT(r) = ρ(r)+ρi(r) is a neutral charge distribution. With this rearrangement, all the terms

give an energy contribution that is finite in the simulation cell.

The other terms of the total energy include :
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Exchange-Correlation energyIt can be mathematically represented as follows :

EXC[ρ] =
∫

ρ(r)εXC[ρ]dr (2.120)

which is calculated by integrating theXC energy density numerically in the real-space grid.

Kinetic Energywhose expression in real space is :

Te[ρ(r)] = −
h̄2

2m
ΣkwkΣNk

i=1 f (k)
i

∫

φ ⋆
i ∇2φidr (2.121)

where f (k)
i is the occupation number of state ”i” at wave vector ”k”, wk is the weight of point ”k” in thr

Brilloin Zone.

Non-local PseudopotentialThis is the only contribution that is somewhat more complicated to

compute. For a particularl -component, the matrix element for an atom "s" located at the origin are :

∇Ṽ l ,s
k+G,k+G′ = < k+G|∇V l ,s

PSP̂l |k+G′ > (2.122)

= Σl
m=−l < k+G|Ylm > ∇vl ,s

PS(r) < Ylm|k+G′ > (2.123)

2.1.7.3 Vacancy Formation Energy

Let us consider a system(AB) [32]. Say, a vacancy is created in this system by the removal of aB a

tom. The vacancy formation energy∆Ef can be defined in terms of the external chemical potentials of

A and B and the Fermi energy (in case the defect is charged) as:

∆Ef = E(NA,NB)−NAµA−NBµB +qε f (2.124)

where,E(NA,NB) is the energy of the system containingNA number for A atoms,NB number of B

atoms,µA andµB are the external chemical potentials and q is the charge of the defect including sign

andε f is the Fermi energy. Now, the energy required to add one ”A” and one ”B” should be equal to

the molar energy of one molecule ofAB. Hence , we can re-write the formation energy as:
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∆Ef = E(NANB)− (NA−NB)µA−NBEAB+qε f (2.125)

where :E(NANB) is the energy of the defect system, the second term gives energy for adding the

extra number of A atoms over and above the number of B atoms that remain in the system after the

defect is created. The third terms gives the energy of the number of complete chemical formulae of the

system that are there after the creation of the vacancy and the fourth termis due to any charge present.

In our case, since the structure and chemical composition of the minerals arevery complicated, we

have tried to work with a simpler method for calculation of the defect formation energy, by-passing the

chemical potential concept. Here, we have considered the formation of theminerals in vacuum. Hence

for us, the vacancy formation energy is obtained by subtracting the total energy of the vacancy-free

structure from the sum of the energies of the vacancy bearing structureand the energy of the atom in

isolation at which vacancy is created. This can be mathematically representedas follows:

∆Ef = E(AmBm−1)+E(B)−E(AmBm) (2.126)

Due to the presence of defect charges(q) in certain cases, defect-defect correction of the form :

E(correction) = αq2/εL (2.127)

is included, whereα is the Madelung constant, L is the cell length, andε is the dielectric constant[6]

.

2.1.7.4 Calculation of barrier height using NEB method

This method is used to determine minimum energy paths involved in a transition, wherein a group

of atoms re-arrange themselves while going from one stable configuration to another. The potential

energy maximum along this minimum energy path represents the barrier height that is encountered in

such a process. Here, both the initial and final configurations for the transition are given. A chain of

images (or replicas, or ’states’) of the system is generated between the end point configurations and all

the intermediate images are optimized simultaneously. In an elastic band method [34]several images
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of the system are connected together to trace out a path. The images are connected using springs and

the object function is defined as:

SPEB(R1, .......,RP−1) = ΣP
i=0V(Ri)+ΣP

i=1
PK
2

(Ri −Ri−1)
2 (2.128)

Here(P+1) represents the number of images,K is the spring constant andRi represents the position

of imagei. V(r i) is the potential acting on theith image. This object functionSPEB is then minimized

with respect to intermediate images, while keeping the end point images,R0 and RP, fixed. This

is referred to as plain elastic band method. But this method involves several disadvantages. In this

method, the force acting on imagei :

F i = −∇V(Ri)+FS
i (2.129)

where :F
S
i = Ki+1(Ri+1−Ri)−ki(Ri −Ri−1)

If the elastic band is too stiff, the path connecting the several images cuts the corner and therefore

misses the saddle point region. But if a smaller spring constant is used, the elastic band or the path

comes closer to the saddle point, but the images manage to slide down and avoid the barrier region,

thus reducing the resolution of the path in the most critical region. This is shown in Fig. 2.7.

The cure is very simple. The problem with corner cutting actually results fromthe component of

the spring force which is perpendicular to the path and tends to pull images offthe Minimum Energy

Path (MEP). The problem with sliding down results from the component of thetrue force∇V(Ri) in

the direction of path. The distance between images becomes uneven so the net spring force can balance

out the parallel component of the true force. This is what that is exactly followed in the nudged elastic

band(NEB) method [7]. Here a minimization of an elastic band is carried out where the perpendicular

component of the spring force and the parallel component of the true force are projected out. The force

on the imagei then becomes:

F
0
i = −∇V(Ri)⊥ +F

S
i .τ̂‖τ̂‖ (2.130)
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Figure 2.7 A contour plot of the potential energy surface for a simple test problem, where
an atom, B, can form a chemical bond with either one of two movable atoms, A or C, as
described by a LEPS(London-Eyring-Polanyi-Sato) [35] potential. The horizontal axis gives
the A-B distance and the vertical axis the B-C distance. (a) A plain elastic band with spring
constant k = 1:0 is shown with filled circles connected by a solid line. It cuts thecorner
and leads to an over estimate of the saddle point energy. The Minimum energypath (MEP)
as obtained by the NEB method is shown with a solid line going through the saddle point.
(b) Same as (a) but with a spring constant of k = 0:1. The corner cutting is diminished, but
now the images slide down from the barrier region towards the minima at the endpoints thus
reducing the resolution of the path in the region of greatest importance [36].

whereτ̂parallel is the unit tangent to the path and∇V(Ri)⊥ = ∇V(Ri).τ̂‖.τ̂‖

We refer to this projection of perpendicular component of∇V and the parallel component of spring

force as ’nudging’. These force projections decouple the dynamics ofthe path itself from the particular

distribution of the images chosen in the discrete representation of the path. The spring force then does

not interfere with the relaxation of the images perpendicular to the path and therelaxed configuration

of the images satisfies∇V(Ri)⊥ = 0, i.e, they lie on the minimum energy path. Furthermore, since the

spring force only affects the distribution of the images within the path, the choice of the spring constant

is quite arbitrary. This decoupling of the relaxation of the path and the discrete representation of the

path is essential to ensure convergence of the minimum energy path.
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2.2 The Monte-Carlo simulation technique

Monte-Carlo methods are a class of computational algorithms that rely on repeated random sampling

to compute results. This is a stochastic technique, and is based on the use of random numbers and

probability statistics to investigate problems. This method hence is used in a wide variety of fields

starting from economics to physics.

We have used the Monte-Carlo simulation technique in our physical system to determine equilib-

rium distribution properties as well as to investigate out-of-equilibrium situations.

When a system is in contact with its environment, the probability that the system is ina microstate

’S’ with energyES is given by:

PS =
1
Z

e−βES (2.131)

whereβ = 1
kT andZ is a normalization constant also known as the partition function of the system

Z = ΣM
S=1e−

Es
KT (2.132)

This summation is over all microstates that are accessible to the system.

Using Eqn 2.131, one can calculate the ensemble average of the physical quantities of interest. For

example, the mean energy is given by:

< E >= ΣM
S=1ESPS =

1
Z

ΣM
S=1ESe−βES (2.133)

Our aim is to simulate a system a system of N particles confined in a volume V at a fixed tempera-

ture T. Now, since we can generate only a finite number ’m’ of the total numberof M microstates, we

might estimate the average value of a certain physical quantity ’A’ as :

< A >≈ Am =
Σm

S=1ASe−βES

Σm
S=1e−βES

(2.134)

AS is the value of A in the microstate ’S’
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A very crude way would be to generate a microstate ’S’ at random, calculateES, AS ande−βES, and

evaluate the corresponding contribution of this microstate to B. However, if we follow this procedure,

it is very much possible that we generate a microstate ’S’, which is rather highly improbable, and hence

would contribute very less to the sum B. So, instead of this, one uses methods where the more probable

states are captured. One such method is the Metropolis algorithm. Here microstates are generated using

a probability distribution functionπS defined as follows:

πS =
e−βES

Σm
S=1e−βES

(2.135)

i.e, we generate microsates with probabilityπS

The following summarizes the Metropolis algorithm in context of the simulation of a system in-

volving spins.

(1)Start with an initial microstate having an energyEini .

(2)Perform a random trial step, e.g, select a spin at random and invert it or say select a spin and ran-

domly displace it. Call this step the trial step, the energy of which is designated by Etrial

(3)Calculate∆E = Etrial −Eini .

(4)If ∆E is less than or equal to zero, accept the new microstate, goto step 8.

(5)If ∆E is positive, compute the weightw = e−β∆E.

(6)Generate a random number ’r’ in the interval [0,1]

(7)If r ≤ w, accept the new microstate, otherwise retain the initial state. This implies that if thetem-

perature is high, we do not mind taking the ’not-so-probable’ direction or step, but as the temperature

is lowered, we are forced to settle into the most probable configuration that can be found in the neigh-

borhood.

(8)Determine the value of the desired physical quantity.

(9)Repeat 2 to 8 to obtain sufficient number of microstates.

(10)Compute averages over microsates.

Here, we basically compute the conditional probability that the system can be found in microstate

’Sj ’, given that it was in microstate’Si ’. It is only necessary to evaluate the ratioPj/Pi = e−β∆E, and
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hence it is not necessary to normalize the probability.

It is to be noted that for performing our Monte-Carlo simulation on mineral systems, we have

developed a model Hamiltonian involving pseudo-spins(instead of real spins), where pseudospins are

used to designate various chemical species, such as Fe, Mg. We will elaborate on this in great details

in the following chapters.
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Chapter 3

Site preference of Fe atoms in

Olivine(FeMgSiO4) and

Pyroxene(FeMg(SiO3)2) studied by

density functional calculations

Olivine(FeMgSiO4) and pyroxene(FeMg(SiO3)2) are the two major minerals in the earth’s upper man-

tle. In this chapter, we investigate the site preference of Fe in both these minerals. A combination of

the state-of-the-art-techniques has been used for this purpose. The strong correlation effect at Fe site

has been taken care of by means of local-density approximation+U calculations. Although the basic

structural units that make up these two minerals are the same, namely, two kinds of metal-oxygen oc-

tahedron, M1 and M2 and Si-O tetrahedron, ourT = 0K study in the total energy minimized structures

finds varied site preferences, indicating a strong preference for Fe tooccupy M2 site in case of py-

roxene and a preference for Fe to occupy M1 site in case of olivine [1]. We provide the microscopic

understanding of our finding in terms of density of states and charge densities.

This chapter is based onPhys. Rev. B79, 115103 (2009)
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3.1 Introduction

As introduced in the first chapter, olivine and pyroxene are the predominant mineral phases present in

the Earth’s upper mantle. They have recorded in them the physico-chemical environment prevailing

at the interior of the Earth. Moreover, olivines are known to appear in extra-terrestrial bodies such

as Mars, moon and meteorites. Hence, these mineral phases have drawn great attention of workers

from different branches of science for over a long time. One of the main objective of these studies

aims at developing thermodynamical models, and use them to understand the thermal evolution and the

differentiation processes in the mantle.

The basic structural units in both olivines and pyroxenes are the same. They consist of Si-O tetra-

hedral unit and the Metal-O octahedral unit. These octahedral units arefurther of two types, namely,

M1 and M2. The M1 octahedral geometry is comparatively more regular andsmaller in size whereas

the M2 octahedral unit is more distorted and larger.

A problem of great geological importance is the nature of the site preference of Fe-Mg in or-

thorhombic olivines and pyroxenes. At a given temperature, Fe and Mg cations are partitioned among

the two in-equivalent octahedral sites M1 and M2 with varying proportions. It is an experimentally

established fact that at room temperatures Fe strongly prefers M2 site in pyroxenes, resulting in Mg

occupying M1 site[2, 3]. In contrary, there is a wide variation in the resultsreported on site prefer-

ence in olivine. One of the earliest studies on the distribution of Fe-Mg overthe two non-equivalent

sites in olivines dates back to 60’s[4]. Several investigations using X-ray diffraction[5], Mossbauer

spectroscopy[6], crystal field spectra[7] yielded information about the crystal structure of olivine and

suggested that the Fe2+-Mg2+ distribution is either totally random or very weakly ordered, with Fe2+

preferring M2 site, which is in general true for Fe2+ in other silicate group of minerals. However, some

experimental studies conducted on terrestrial and lunar samples of natural olivine revealed the tendency

of Fe2+ to occupy M1 sites [8]. A distribution coefficient ’KD’, described as follows, is popularly used

to quantify partitioning of Fe into M1 and M2 site:
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KD = [(Fe)M1.(Mg)M2][(Fe)M2.(Mg)M1] (3.1)

where FeM1(MgM1) denotes the atomic fraction of Fe(Mg) at M1(M2) site. These groups reported

increase ofKD values with increasing temperature indicating ordering of Fe2+ in the smaller and more

regular M1 site. Since then a variety of experimental as well as theoretical studies[9] employing pa-

rameters like temperature[10], kinematics of Mg-Fe cation exchange between M1 and M2 sites[11],

pressure[12], fugacity of oxygen[13], presence of elements otherthan Fe-Mg at octahedral sites[14]

were carried out, but failed to reach a common conclusion. In-situ neutrondiffraction studies conducted

on olivine[15] reveals a switch over in the trend ofKD value with increasing temperature, suggesting

a reversal of preference of Fe2+ from M1 to M2 at a critical temperature. But later studies challenged

these findings, saying that Fe2+ orders into the smaller M1 site with rising temperature[16].

The study of intra-crystalline partitioning of Fe and Mg into the two octahedralsites can greatly

help in the thermodynamic modeling of earth’s mantle and also in understanding planetary processes.

Before one attempts in understanding the complex temperature dependence and the thermodynamic

evolution of the site-preference, it is worthwhile to consider theT = 0K case and investigate the site

preference issue from a quantum-mechanical point of view, which to the best of our knowledge has

not been attempted before. Hence in this present work we have conducted extensive studies based on

first principles electronic structure calculations to resolve the nature of Fe-Mg distribution in olivines.

We have used pyroxene as a benchmark to justify and establish our methodology, for which the site

preference of Fe has been definitely established.

3.2 Crystal structure

Olivines have a general formula M2SiO4. They crystallize in the orthorhombic space groupPbnm

(International Table no. 62). The unit cell contains four formula units, i.e, 28 atoms out of which 8

may be either Fe or Mg, 4 Si and 16 O. The corresponding Wyckoff positions are given in Table I.

Orthopyroxenes also crystallize in the orthorhombic symmetry but with a different space group,Pbca
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(International Table no. 61). The unit cell contains 8 formula units,i.e 80 atoms with 16 being Fe or

Mg, 16 Si and 48 O, with all species occupying Wyckoff position 8c.

In order to understand the complex crystal structure of these silicate minerals we have broken up

the complete lattice structure into three sub-lattices: (i) Si-O tetrahedral unit (ii)M1-O octahedral unit

(iii) M2-O octahedral unit and compare them for olivine and pyroxene (Fig. 3.1).

The individual structural units of olivines and pyroxenes are described and compared in great details

in the following:

Si-O tetrahedral unit-Olivine and pyroxene being silicate minerals are essentially built out of

(SiO4)4− tetrahedral units [see left panels in Fig. 3.1]. In any (SiO4)4− unit there are three distinct

oxygen positions corresponding to three distinct Si-O bonds. Out of the four oxygens two oxygen ions

which are equidistant from Si are labeled as O3. The oxygen farthest from Si4+, which also forms

the apical oxygen is named as O1. The one situated nearest to Si4+ is O2. In the case of olivines,

the tetrahedral units are completely isolated from each other and are called neso-silicates(as already

introduced in the first Chapter). Viewed on thebcplane [top left panel in Fig. 3.1], the tetrahedral units

form rows parallel toc−axis with alternately pointing up and down along theb axis in any particular

row. On the other hand in case of orthopyroxenes, theSiO4 tetrahedral units share corners forming

chains [bottom left panel in Fig. 3.1]. The (SiO4)4− units share their two O3 oxygen atoms with their

neighbors forming the chained structure alongc−axis. These chains are not straight as seen from the

view along c [bottom left panel in Fig. 3.1] but form layer of tetrahedral units parallel tobcplane. These

alternate planes can be further distinguished as T1 and T2 layer. The three distinct oxygen belonging

to T1 are regarded as O1A O2A O3A and those belonging to T2 are designated as O1B O2B O3B.

M1-O octahedral unit-The M1 octahedral units in both olivines and pyroxenes are connected to

each other forming chains. In olivine, two O1, two O2 and two O3 oxygen atoms participate in forming

the M1O6 octahedral unit along with centrally placed M1 cation. The neighboring M1O6 octahedral

units share edges (O1-O2) to form chains parallel toc-axis [top middle panel in Fig. 3.1]. Whereas, in

pyroxene, two O1A, two O1B, one O2A and one O2B make up the M1 octahedra. It is to be noted that

O3A and O3B are not connected to M1 in pyroxenes. The M1O6 octahedra share (O1A-O2B) edges
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Table 3.1The Wykoff positions for each species in case of olivine.

atom class coordinates

M1 4a (0,0,0), (1/2,1/2,0), (0,0,1/2),

(1/2,1/2,1/2)

M2, Si, O1, O2 4c (x,y,1/4), (x+1/2,-y+1/2,3/4),

(-x,-y,3/4), (-x+1/2,y+1/2,1/4)

O3 8d (x,y,z), (x+1/2,-y+1/2,-z),

(-x,-y,z+1/2),(-x+1/2,y+1/2,-z+1/2),

(-x,-y,-z), (-x+1/2,y+1/2,z),

(x,y,-z+1/2), (x+1/2,-y+1/2,z+1/2)

with adjacent M1 octahedral units to form zig-zag chain like structures running almost parallel to c

axis.

M2-O octahedral unit-The M2-octahedra in olivines is made out of one O1, one O2 and four O3

oxygen atoms. Each M2O6 octahedral unit shares corners(O3 atom) with four other M2 octahedrato

form a somewhat corrugated plane parallel toac face of the unit cell. In case of pyroxene, all six in-

equivalent oxygen atoms participate in forming the M2O6 octahedral unit. Unlike that of the olivine, in

case of pyroxene the M2 octahedral units are not connected to each other and hence remain completely

isolated.

On superimposing the three sub-lattices, one obtains the full structure of olivines and pyroxenes as

shown in Fig. 3.2.

3.3 Results

3.3.1 Structural Optimization

The experimentally determined olivine and pyroxene crystal structures have been optimized using our

theoretical tools. This is done in order to obtain the most stable configuration,as crystal structure data
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Figure 3.1 Building units of olivine projected on tobc plane (top panel) and pyroxene-
projected ontoab plane (bottom panel). (a) SiO4 tetrahedral unit. (b)M1-O octahedral unit.
(c) M2-O octahedral unit.

Figure 3.2Complete lattice structure of olivine (left panel) and pyroxene (right panel)
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used in our calculation are determined from actual minerals, which might havebeen formed under

various diverse conditions, and hence might not be the equilibrium structure. Moreover oxygen being

a light element, its positions co-ordinates can not be estimated very accuratelyusing X-ray diffraction.

Hence a structural optimization was done by employing the plane-wave pseudo-potential method as

employed in VASP [20]. The atomic positions have been optimized keeping the lattice constants fixed

at the experimentally estimates values.

The structural parameters, as obtained in our calculations are summarized inTable II. Although,

the experimental measurements do not report separate data for Fe occupying M1 and M2 sites, the

energy optimized data would very naturally depend on whether Fe occupiesM1 or M2 site. We have

therefore carried out structural relaxations for the two individual cases, Fe occupying M1 and M2 sites

respectively. Table II shows the structural data for representative cases where all the M1(M2) sites are

occupied by Fe(Mg) and vice-versa. The energetically optimized atomic positions show reasonable

agreement with the experimental data listed in the first three columns. While the position of Fe/Mg

cations and Si atom are found to remain more or less unchanged, the O atomic positions are found to

differ at most by 5% for olivine and 10% for pyroxene. In the following,we have considered for our

calculations the energetically optimized structure in each case.

3.3.2 Basic Electronic Structure

Our non-spin-polarized DFT-LDA calculation finds both Fe-containing olivine and pyroxene to be insu-

lators. The insulating solution as obtained in non-spin-polarized LDA calculations, can be rationalized

in the follow manner: the octahedral surrounding of Fe, which is created by the oxygen atoms splits

the five degenerate Fe-d states into 3 t2g and 2 eg levels. The non-spin-polarized calculation forces

Fe2+(3d6) to go into low spin configuration,i.e, the t2g levels are completely filled whereas the eg lev-

els are completely empty. The energy gap between the t2g-eg levels appears as the gap at the Fermi

level, thereby resulting in an insulator. The occupied energy levels for theMg and Si atoms, which

occur in their +2 and +4 oxidized states in olivines, lie deeper down, much below the Fermi level.

However, once the spin degrees of freedom are relaxed through performance of spin-polarized calcu-
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Table 3.2Optimized structural parameters for olivine and pyroxene where all M1(M2) sites
are occupied by Fe(Mg) and vice-versa in comparison to experimentally determined structure
(data taken from ref 21 and 22). Lattice constants have been kept fixedat the experimental
values.

OLIVINE

experimental data optimized data

[ref 21] Fe at M1 Fe at M2

atom x y z x y z x y z

M1 0 0 0 0 0 0 0 0 0

M2 0.992 0.279 0.25 0.992 0.278 0.25 0.987 0.278 0.25

Si 0.425 0.098 0.25 0.428 0.096 0.25 0.429 0.094 0.25

O1 0.768 0.092 0.25 0.75 0.095 0.25 0.767 0.088 0.25

O2 0.217 0.451 0.25 0.208 0.448 0.25 0.226 0.451 0.25

O3 0.283 0.164 0.035 0.284 0.165 0.035 0.284 0.163 0.033

PYROXENE

experimental data optimized data

[ref 22] Fe at M1 Fe at M2

atom x y z x y z x y z

M1 0.375 0.654 0.874 0.376 0.656 0.863 0.376 0.655 0.874

M2 0.378 0.483 0.367 0.376 0.492 0.358 0.378 0.487 0.366

Si1 0.474 0.337 0.796 0.473 0.336 0.708 0.473 0.336 0.796

Si2 0.272 0.341 0.052 0.274 0.341 0.049 0.272 0.341 0.058

O1 0.562 0.337 0.799 0.562 0.34 0.790 0.562 0.335 0.798

O2 0.312 0.501 0.053 0.314 0.5 0.041 0.313 0.501 0.056

O3 0.447 0.204 0.595 0.448 0.195 0.597 0.447 0.199 0.597

O4 0.184 0.338 0.041 0.185 0.344 0.027 0.183 0.337 0.046

O5 0.435 0.484 0.696 0.431 0.48 0.683 0.433 0.485 0.695

O6 0.303 0.231 0.824 0.304 0.21 0.832 0.303 0.228 0.833
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lations, Fe appears in its high spin state, with a finite magnetic moment of about 3.7µB at the Fe site.

The spin polarized calculation within the framework of LDA yields a metallic solutionwith fully filled

Fe d states in the majority spin channel, and partially filled Fe t2g states in the minority spin channel.

It is therefore expected that the inclusion of missing correlation effect in LDA, within the partially

filled Fe t2g manifold would lead to opening up of a gap through formation of Mott-Hubbardinsulator.

The LDA+U calculations confirm this expectation.For all the LDA+U calculations, we have fixed the

value of U at 4.5 eV while the Hund’s exchange J is chosen to be 0.8 eV (introduced to consider the

multi-orbital situation).

Fig. 3.3 presents the LDA+U density of state (DOS) for olivine (FeMgSiO4) and pyroxene (FeMg(SiO3)2)

projected on to Fe-d, O-p, Mg-sp and Si-sp states. Here, the zero of theenergy is set at the top of the

valence band. In these calculations, one of the octahedral sites out of 8available have been assumed

to be occupied by Fe and the rest by Mg. We show the density of states for the representative cases

where the Fe(Mg) atoms have been put at M1(M2) sites, since the gross features of the density of states

remain same in different site occupancies. We can see from the DOS plot that the Mg and Si states

remain empty with negligible contribution in the occupied part of the DOS. The density of states close

to Fermi energy is mostly dominated by O-p and Fe-d derived states, indicatinga strong hybridization

between Fe-d and O-p. The d-p hybridized bands extend from -9eV to 4eV in case of olivine and

-11eV to 5eV in case of pyroxene. The split out states at the bottom of dp derived manifold in case of

pyroxene in the energy range of about -11 eV to -9 eV arises out of O3A and O3B oxygens which are

not connected to M1 site.

3.3.3 Total Energy Calculations - Site preference

The results of our total energy calculations within the framework of LDA+U,performed using our

optimized geometries for olivine and pyroxene is shown in Table III. We findthat in case of pyroxene

when Fe is in the M2 site the total energy is much lower, compared to when it occupies the M1 site,

the energy difference being 153.89 meV (1786.11 K) per Fe site[27]. Hence Fe occupying M2 site

is the stable, preferred configuration in case of pyroxene. This resultis in accordance with published
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Figure 3.3 Partial DOS of olivine(top panel) and pyroxene(bottom panel) projectedonto
Fe-d, O-p, Si and Mg. Within each panel the upper(lower) sub-panelcorresponds to ma-
jority(minority) spin. The negative of DOS has been plotted for the minority channel for
clarity.
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Table 3.3LDA+U total energies for olivine and pyroxene with Fe atoms placed at the M1
sites and M2 sites respectively.Energy differences between the the two configurations are
listed in the last row.

olivine pyroxene

site Energy(eV) site Energy(eV)

Fe at M1 -218.04133 Fe at M1 -644.2392

Fe at M2 -217.89932 Fe at M2 -645.4710

Energy difference Energy difference

per Fe= 35.48 meV (411.83 K) per Fe = 153.89 meV (1786.11 K)

experimental results, where a strong preference of Fe for M2 site has been reported [3, 4]. Having

succeeded in arriving at the correct description of site preference incase of pyroxene, we can conclude

that our methodology successfully describes complicated mineral structure. Hence, we next extend

it to the case of olivine, where the situation is rather unsettled. In case of olivine our total energy

calculations show a preference for M1 site, the energy difference being 35.48 meV (411.83 K) per Fe

site.

Total energy calculations performed at lower concentrations of Fe in olivine i.e, 25% (2 Fe atoms

per unit cell) and 12.5%(1 Fe atom per unit cell) also show a preference of Fe for M1 site. For 25%

concentration of Fe we obtain a energy difference of 43.97 meV (510.342K) per Fe atom, whereas

for 12.5% concentration, the energy difference is found to be 60.01 meV (696.522 K) per Fe atom.

The quoted values are obtained by taking the average of energy differences where the two Fe sites are

placed at six different configurations in case of 25% concentration andfour different configurations in

case of 12.5% concentration.

Further, attempts made to simulate the hydrostatic pressure by varying the experimentally measured

lattice constant at ambient pressure, do not seem to alter the conclusion ofFe preferentially occupying

M1 site. The energy difference were found to change by about 3% fora change of lattice parameters

by 2%.
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Figure 3.4 Comparison between total DOS for olivine and pyroxene with Fe at M1 and
M2 sites in olivine (top panel) and pyroxene(bottom panel). The solid and the dashed lines
correspond to DOS for Fe at M1 and M2 respectively. Inset shows anenlarged plot of DOS
focused at the bottom of the conduction band.
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for Fe at M1 (top panel) compared to Fe at M2 (bottom panel).
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3.3.4 Discussion

In order to explain our results, we perform a structural comparison andanalysis of the olivine and

pyroxene crystal structures. These are summarized in Table IV. We findthat the distortion of M2O6

octahedral unit in case of olivine is about 2 times larger than that of M1O6. Whereas, in the case of

pyroxene, it is 3 times larger. The octahedral size analysis shows that theM2O6 octahedra is larger

by 17% as compared to M1O6 in case of pyroxene while it is only 5% larger in case of olivine. The

M1O6 and M2O6 structural difference is therefore much larger in case of pyroxene ascompared to that

of olivine. We know that the ionic radius of Fe2+(0.76 ) is larger than that of Mg2+(0.72 ) by 0.04 . The

mere size consideration would hence imply that Fe2+ should preferentially occupy the larger of the two

octahedral units, M2 in both pyroxene and olivine. Although, our total energy calculations find such a

preference in case pyroxene, it shows that Fe2+ prefers the smaller M1 site in case of olivine, which

is against what is predicted using geometry. Hence, the simple size consideration works for pyroxene

which has a large structural difference between M1 and M2 sites, but it fails in the case of olivine, where

the structural difference between the M1 and M2 site is small. We note that the size argument is based

on the concept of isolated M1O6 and M2O6 octahedra and does not take into account the connectivity

of M1 and M2 sites to other sites which is different between olivine and pyroxene. The connectivity of

these octahedral units to their respective crystal environment should also be an important parameter in

the determination of site preference, which we will bring in next in our analysis.

In order to determine the microscopic origin of site preferences, we perform a comparison of the

density of states(DOS) in two cases : (1) where the Fe atoms have been putinto M1 and (2) where Fe

atoms have been made to occupy M2 sites, the concentration of Fe-Mg being 50-50, for both olivine

and pyroxene. While the gross features of the density of states are found to be similar between M2

occupied Fe2+ and M1 occupied Fe2+ situations, with occupied part of the spectrum being dominated

by O-p and Fe-d, the two density of states differ in finer, minute details. The difference between DOS

for Fe occupying M1 and M2 sites respectively, appears to be more pronounced in case of pyroxene

than in case of olivine. This is but expected, because of the larger structural difference between M1

and M2 in case of pyroxene compared to olivine. The DOS shows a band gap of 2.18 eV for olivine
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with Fe occupying M1 site as compared to a band gap of 2.16 eV with Fe occupying M2 site. In

contrast, for pyroxene the band gap is found to be 3.06 eV for Fe in M2 siteand 2.30 eV for Fe in

M1 site. Larger band gap points towards greater stability in terms of lowering of band energy. Hence,

the band-gaps computed also support the results obtained from total energy calculations. The lowering

of energy levels can happen through increased co-valency effect between metal d and neighboring

oxygen p states.. In case of pyroxene, the M1 site is connected to only four oxygen sites out of the

six in-equivalent O sites, whereas M2 is connected to all the in-equivalent oxygens. Hence, because of

this greater connectivity, there is an enhanced co-valency effect forFe sitting at M2 site which works

hand-in-hand with the larger volume effect at M2 site, resulting into a strongpreference of Fe2+ for

M2 site. In case of olivine, the M1 site forms chains by sharing the oxygen edges of neighboring

octahedra while M2 sites form a network with corner shared oxygens from neighboring M2-octahedra

resulting in reduced connectivity for Fe at M2 as compared to M1. This causes an enhanced covalency

for Fe occupying M1 site, which is sufficient enough to overcome the larger size effect of M2 occupied

situation. Fig. 3.5 shows the charge density plots inac plane for olivine with M1 sites occupied

by Fe(top panel) and M2 sites occupied by Fe(bottom panel). The Fe-O covalency is found to be

much stronger for the M1 occupied case compared to M2 occupied case, placing further the arguments

presented above on a strong footing.

3.4 Conclusion

In conclusion, we have carried out a thorough study of the site preference problem in case of silicate

minerals like olivine and pyroxene using first-principles electronic structure calculations within the

framework of density functional theory. While the experimental situation clearly indicates a preference

for M2 site over M1 site for Fe in case of pyroxene, the situation in case of olivine was debatable. Our

calculations atT = 0K from a purely quantum chemical point of view found a strong preference towards

M2 site for pyroxene in agreement with experimental finding, while atT = 0K preference towards M1

site has been found for olivines. Our study finds the important role of covalency in deciding the site
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Table 3.4size and structural distortion of octahedral units

OLIVINE

site average M-O volume of MO6 RMS deviation of

bond length octahedron M-O bond length

M1 2.1287Ao 12.8612 (Ao)3 0.0407Ao

M2 2.1611Ao 13.4575 (Ao)3 0.078Ao

PYROXENE

site average M-O volume of MO6 RMS deviation of

bond length octahedron M-O bond length

M1 2.0917Ao 12.2022 (Ao)3 0.0592Ao

M2 2.2029Ao 14.2536 (Ao)3 0.1842Ao

preference in addition to size effect. Carrying over from this point, in the next chapter we present the

effect of finite temperature on the site preference of Fe in olivine, which isa much debated topic in

the geo-sciences community. Our zero temperature results and analysis, aspresented in this Chapter,

forms the basis of the finite temperature calculations that follow up in the next Chapter.
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Chapter 4

Crossover of cation partitioning in

olivines : a combination of ab-initio and

Monte carlo study

In this Chapter, we report our studies based on a combination of ab-initio electronic structure and Monte

Carlo simulation technique on the problem of cation partitioning among in-equivalent octahedral sites,

M1 and M2 in mixed olivines containing Mg2+ and Fe2+ ions, with increasing temperature. We find

that there is no reversal of the preference of Fe for M1 over M2 as a function of temperature. Our

findings do not agree with the experimental findings of Redfernet al. [1] but are supported by those of

Heinemannet al. [2] and Morozovet al. [3].

4.1 Introduction

It has long been recognized that non-equilibrium cation ordering in minerals might provide a means to

measure cooling rates of rocks. Such kind of studies have been reported on pyroxene [4], Al/Si order-

ing in alkali feldspar [5] and Mg/Fe ordering in amphiboles [6]. These minerals being comparatively

This chapter is based onPhys. Rev. B81, 155105 (2010)

77



78
Chapter 4 Crossover of cation partitioning in olivines : a combination of ab-initio and Monte carlo

study

complex, such kind of phenomena may easily get obscured by displacive phase transitions and exolu-

tion phenomena. Hence, in this chapter, we deal with a structurally simpler mineral phase, olivine [7].

We have already shown in the previous chapter that due to difference in crystallographic environment

of the two M-sites as well as in the chemical behaviour ofFe2+ andMg2+ cations, Fe prefers to occupy

a certain octahedral site atT = 0K. As an extension to this, here we study the temperature dependence

of the site preference and hence the ordering/disordering of Fe inFe−Mg olivine(FeMgSiO4). Such

a study becomes important because it is directly related to the physical properties of the crystal and

thermodynamic properties of the crystal assemblages. A knowledge of the effects of temperature (in

addition to that of pressure and composition) on the non-convergent [27], inter-site ordering/disordering

of the octahedral cations is essential for a thorough understanding of the thermodynamic, petrological

and geophysical properties of the phase. Most importantly, the ability to determine the cooling rates

of olivine from partitioning of the cations over the structurally distinct M1 andM2 octahedral sites

would be invaluable in explaining a large number of issues. For example, ancient strombolian type er-

ruptions could be distinguished from erruptions involving less rapid quenches on the basis of expected

differences in M-site partitioning of olivines contained with-in them. Moreover, it could resolve the

serious disagreement over whether alkali olivine basaltic sills cooled rapidly by processes involving

convection [9] or more slowly, by method of conduction [10]. Determination of cooling rates, also

known as "Geo-speedometry", from intra-crystalline cation partitioning demands precise and accurate

knowledge of site occupancies over a large temperature range.[11]

In the case of the olivine structure, since the two inequivalent octahedral sites M1 and M2 have

similar geometries as opposed to other structures such as pyroxenes or amphiboles, it makes the pre-

diction of site preference of Fe in mixed Fe-Mg olivine difficult and hence the problem interesting and

much debated. An enormous amount of contradictory reports have been published over a long time in

this regard. We have theoretically addressed this site-preference problem in olivine atT = 0K using a

first principles study[12], which has been extensively discussed in theprevious Chapter. For complete

understanding of the site-preference problem, further knowledge of the effects of temperature on the

ordering/disordering of the cations occupying the octahedral sites is essential. In the case of Fe-Mg
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olivine the temperature variation of ordering/disordering is also highly disputed and has been debated

for over a long time, the problem being still very much alive and burning till date.

As already introduced in the last Chapter, the site occupancy is quantitatively represented by a

distribution coefficientKD, for intra-crystalline partitioning of cations among the two inequivalent oc-

tahedral sites M1 and M2. Since, we have extensively used this parameterin this chapter, we feel it is

worthwhile to describe it once again here. For mixed Fe-Mg olivineKD is defined as follows :

KD =
[(Fe)M1.(Mg)M2]

[(Fe)M2.(Mg)M1]
(4.1)

where FeM1(MgM1) denotes the atomic fraction of Fe(Mg) at M1(M2) site. Hence whenKD = 1, it

represents complete disorder. KD > 1(KD < 1) indicates the preference of Fe to occupy M1(M2) site.

There have been a large number of experimental studies reported which deal with site preference

of Fe with increasing temperature in Fe-Mg olivine. As early as in 1973, Smythand Hazen[13] found

using X-ray diffraction studies that Fe orders more and more into the smaller M1 site with increasing

temperature. Later reports include those by Artioliet al.[14] and Rinaldiet al.[?, 15], who performed

in-situ single crystal neutron diffraction studies on natural olivines (Fa10 and Fa12, where Fa stands

for fayalite and the number following it represents the percentage of Fe in the octahedral sites, the rest

being Mg) at temperatures upto 1300◦C. They found Fe2+ to be initially enriched into M1 site. However

beyond a certain critical temperature∼900◦C, the site preference was found to be reversed. Given the

existing knowledge of other minerals, such reversal of site preferenceis an unexpected phenomena and

therefore interesting. A similar behavior was found by Redfernet al.[1] for synthetic polycrystalline

olivine (Fa50). In this study the state of complete disorder was reached at∼600◦C, beyond which the

site preference of Fe was found to reverse. This order/disorder behavior as reported by the experimental

studies mentioned above are in direct conflict with a large number of reportssuch as that of Heinemann

et al.[17] obtained using single crystal diffraction studies, Mössbauer spectroscopic studies done on

powdered olivine sample by Morozovet al.[3], results obtained by performing X-ray diffraction on

single crystal olivine by Heinemannet al.[2] and more recently the results of Abduet al.[19] obtained

by performing Mössbauer spectroscopic studies on powdered samples.None of these studies find the
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site preference of Fe to get reversed at elevated temperatures. Some ofthese studies (Heinemannet

al. 1999, 2000) [2] [18] point out that the discrepancy between the findings by the group of Redfernet

al. [1] [14] [16] and others lies in the incorrect correlation between the site occupancies and the cation

thermal displacement parameters which have been used in the study by Redfernet al.[1] to derive the

KD values. Therefore although the atomic co-ordinates reported in the study by Redfernet. al. [1]

are essentially correct, the reported site occupancies are not. Argumentshave been further provided

in favour of the "no-cross-over" partitioning scenario by consideringthe temperature dependence of ln

KD known for other transition metal-Mg olivines.

In order to resolve this controversy we have performed a purely theoretical study on a 50 : 50

FeMgSiO4 olivine using a combination of classical and quantum mechanical tools. To thebest of our

knowledge, no such theoretical studies have been attempted so far. The rest of the Chapter is organized

as follows. We have constructed a lattice gas like model based on the crystalstructure of olivine,

which we use to address the problem of site preference. This is followed up by the result section

consisting of several different sub-sections: we start with a discussion of changes in crystal structure

upon increasing temperature, as reported by Redfernet al.[1] and Heinemannet al.[2], followed by

description and comparison of the parameters of the lattice gas model extracted out of first-principles

DFT calculations carried out on crystal structure data of Redfernet al. [1] and Heinemannet al. [2].

The next Subsection under the Results section describes KD values obtained from our theoretical study

and its comparison with existing experimental results. Finally we present our summary and conclusion.

4.2 Lattice Gas Model

Fig. 4.1 shows the olivine crystal structure projected on thebc plane. The zig-zag lines as seen in the

figure connect M1 and M2 octahedral sites lying in the same plane.These planes are in turn stacked

along the crystallographica axis with little connection between them. Based on this crystal structure

information, we introduce a 2D lattice gas model, to address the issue of site preference. We consider

the olivine structure to be projected on to the 2D lattice in crystallographicbcplane, where we consider
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Figure 4.1 Crystal structure of olivine projected on thebc plane. Large, medium and small
atoms respectively designate cations(Fe,Mg), Si and O atoms. The red(dark) octahedra are
the M1O6 octahedra and the green(light) octahedra are the M2O6 octahedra. The three dis-
tinct oxygen atoms O1, O2, O3 have been marked. The solid lines depict zig-zag chains
connecting nearest neighbour M1 and M2 octahedra.

J’

J
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Figure 4.2 Schematic diagram of olivine projected onbc plane with silicon and oxygen
degrees of freedom integrated out. The open circles represent M1 sites and filled circles
correspond to M2 sites.

only the M cationic sublattice, as that is the relevant lattice for site preference. The Si and O degrees of

freedom have not been considered explicitly. These degrees of freedom are assumed to be taken into

account in quantum chemical calculation of the parameters of the model. As mentioned above, since

the olivine structure is almost layered with little connection between out of planemetallic sites, such

an approximate model is expected to capture the basic phenomena.
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Fig.4.2 shows the 2D model under consideration. The bold line is indicative ofthe zig-zag chain

formed by nearest neighbor M1 and M2 sites. The interchain M1-M2 neighbours as indicated by dotted

lines, form second near neighbour pairs. We model the site preferenceof Fe on this lattice within an

Ising like spin model. We consider a pseudo-spin variable Si=±1, with Si=+1(−1) denoting Fe(Mg).

A model Hamiltonian involving the pseudo spins can, then be written as follows:

H = J∑
i j

SiSj +J′∑
i j ′

SiSj ′ −h∑
i

Si (4.2)

−hs

(

∑
i∈M1

1+Si

2
− ∑

i∈M2

1+Si

2

)

+C.

Here ,

J ⇒ is the chemical interaction energy between the first nearest neighbours,denoted byi and j,

and

J′ ⇒ is the chemical interaction energy between second nearest neighbours denoted byi and j ′.

The chemical interactions between Fe and Mg are expected to be short-ranged. The interactions

beyond second nearest neighbors are therefore neglected. The sign of J andJ′ decide whether similar

or opposite kinds of pseudo spins (representing Fe and Mg) are preferable as first and second nearest

neighbours, respectively.

h ⇒ The third term in the expression, involvingh is a magnetic field like term, which gives the

difference of chemical potential between Fe and Mg. For Fa50 where theFe-Mg ratio is 50 : 50, the

contribution from this term vanishes.

hs ⇒ The fourth term in the expression, represents the site preference, the magnitude of site pref-

erence being given by the parameterhs. The positive value ofhs indicates Fe having preference for M1

site and the negative value indicates the opposite. All the factors that are believed to be responsible for

the cation ordering such as the metal-O covalency [12] and the geometrical size effect are considered

to be captured byhs.

C ⇒ is a constant which sets the zero of the energy.
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4.3 Results

4.3.1 Variation in crystal structure of olivine with increasing temperature

We first examine how the crystal structure of 50-50 olivine varies with temperature as determined

experimentally. There are only two crystal structure data available in the literature where the variation

of the crystal structure with temperature has been reported over a wide range, namely, by Redfernet al.

[1] and Heinemannet al. [2].

In Fig. 4.3 and Fig. 4.4 compare the structural parameters of our interest namely the volumes of

M1O6 and M2O6 octahedra extracted out of the crystal structure data obtained by Heinemann et al.

[2] and Redfernet al. [1]. Considering the crystal structure of Heinemannet al. [2] the M1-O and

M2-O octahedral volumes are seen to increase monotonically as temperatureis increased. A plot of

the difference in M1-O and M2-O volumes with temperature(Fig. 4.4) is hencefound to be more or

less flat and featureless, apart from small fluctuations at higher temperatures. The crystal structure data

measured by Redfernet al. [1] produces the M1O6 volume that increases at a slower rate compared to

M2O6 octahedral volume below∼600◦C, beyond which it increases faster than that of M2O6 octahedral

volume, leading to the conclusion that the thermal expansion of M1O6 and M2O6 octahedra reverses

at a critical temperature. As a result the difference in M1O6 and M2O6 octahedral volumes exhibits a

minima around∼600◦C as shown in Fig. 4.4.

4.3.2 Determination of the parameters of the model Hamiltonian from quantum me-

chanical total energy calculations

To determine the values of the parametershs, J, J′ andC [26], we have carried out DFT calculations for

four different configurations of M1 and M2 sites in a Fa50 olivine as shown in Fig. 4.5. The energies

hence obtained for these four configurations are then substituted in the model Hamiltonian which are

solved to determine the four unknown parametershs, J, J′ andC. DFT total energies for configurations

as shown in Fig. 4.5 (marked as U1-U4) on DFT optimized crystal structure at T = 0K give rise to

values:
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Figure 4.3 Temperature(in degree C) dependence of volume of M1 and M2 octahedra (in
3). The black(dark) curves are from Heinemannet al. [2] crystal structure data and the
brown(light) curves are for Redfernet. al. [1] crystal structure data. Solid(dashed) lines con-
necting data points represented as circles(squares) represent M1(M2) volumes respectively.
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Figure 4.4 Difference in volume between M1 and M2 octahedra (in3) vs temperature (in
degree C). Black(dark) and brown(light) curves represent the datapoints corresponding to
Heinemannet al. [2] and Redfernet al.’s [1] crystal structure data respectively.
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U3

U4

U1

U2

Figure 4.5Four different configurations of the olivine unit cell. The first column in each cell
represents M1 sites, whereas the second column represents M2 sites. Feand Mg atoms have
been marked with red and green respectively.

.

hs=0.021eV,J=0.003 eV ,J′=0.001 eV andC= -218.288 eV.

Hence keeping aside the parameter C which sets the zero of the energy, wefind that the value of

hs which is a order a magnitude larger than that ofJ andJ′, has the dominating effect. This trend has

been also previously seen in another mineral which is also a major constituentof the upper mantle of

the earth, namely, garnet[24].

Within DFT, we are unable to produce the temperature dependent crystal structure data which

demands computer extensive ab-initio molecular dynamics by Car-Parinello [25]. In the next step, we

therefore recalculatehs, J, J′ andC over a wide range of temperature using the crystal structure data of

Redfernet al [1] and Heinemannet al [2].

Fig. 4.6 shows the variation ofJ, J′ andhs as a function of temperature for the two different sets

of crystal structure data as provided by Redfernet al [1] and Heinemannet al [2]. The parameterhs

is found to follow roughly the same variation as the volume difference of M1-M2 octahedra, while

the parameterJ exhibits weak temperature dependence. The second nearest neighbour interactionJ′,

though, shows some variation, particularly for the crystal structure data by Redfernet al [1].
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Figure 4.6Variation ofhs, J, J′ as a function of temperature (in◦C), as given by Heinemann
et al [2] crystal structure data(right) and Redfernet al [1] crystal structure data(left). Black-
solid curve(dark-solid) representshs, brown(light) curve representsJ and black-dashed(dark-
dashed) curve representsJ′ in both the graphs.

4.3.3 Determination of KD value from MC simulation

Considering the constructed lattice gas model with inputs from first-principlestotal energy calculations,

we performed Monte Carlo (MC) simulations to find out KD at various temperatures.

The calculated ln KD values are shown in Fig. 4.7. For comparison, we also plot the ln KD values

as obtained by Redfernet. al. [1] and Heinemannet. al. [2]. Our results are found to be in clear

conflict with Redfern’s work [1] which indicates a crossover partitioningof Fe at 600◦C (positive and

negative values of lnKD indicates preference towards M1 and M2 sites respectively). Our results on the

other hand indicates that all throughout the temperature range Fe segregates into M1 site which follows

the trend suggested by Morozovet. al. and Heinemannet al [2].

The site preference of Fe in olivine is decided upon by two competing factors, the Fe-O covalency

and the geometric size effect. The co-valency effect prefers the occupancy of Fe at M1 site, while the

geometric size effect prefers the occupancy of Fe2+ which is larger in size compared to Mg2+, at M2 site

[12]. Considering the crystal structure data of Redfernet al [1], at very low and very high temperatures

the size difference between M1 and M2 is not significant. As a result co-valency is the dominant factor
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Figure 4.7 Variation of ln KD with inverse of Temperature (in K−1). The upper panel
shows the experimentally determined values whereas the lower panel givesour theoretically
obtained values for lnKD obtained using experimental crystal structure data measured by
Redfernet al [1] and Heinemannat al [2] at various temperatures. In both the graphs the
black(dark) curve represents Heinemann et al and the brown(light) curve represents Redfern.
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and makes Fe prefer M1 site, whereas at intermediate temperatures, 600◦C, the volume difference

becomes larger, which makes the geometry effect comparable to the co-valency effect of M1 site. This

results in a dip in lnKD value signaling increase of disorder. The disorder at 600◦C is also reflected

by J and J’ values which are of opposite sign in this region, though their magnitude are significantly

small. However, nowhere in the whole temperature range does the size difference between M1 and M2

become so large so as to cause a flip in the site preference of Fe. Consideration of the crystal structure

data of Heinemannet al [2] results into much more flatter ln KD vs T−1, curve reflecting the relatively

less temperature-sensitive crystal structure data.

4.4 Summary and Conclusions

In this study we have shown that accurate ab-initio calculations can be usedto predict the nature of

the partitioning of cations in mixed olivines. Going beyond our earlier work [12] on this subject we

have now tried to examine whether the site-preference of the cations undergo a reversal with increase

in temperature as has been suggested in literature [1]. For this we have used a Monte Carlo scheme

with inputs from ab-initio calculations, which fix the basic interactions, determined on the measured

crystal structure data. Using the data of Redfernet al. [1] we show that although, the value ofKD

which quantifies the site preference, appears to decrease, initially with temperature, it goes through a

minimum aroundT = 600◦C and recovers to its zero temperature value on further increase of temper-

ature producing a variation in KD(ln KD) value but always keeping it greater than 1(positive) signaling

a small but finite preferential site occupancy of Fe at M1 site all throughoutthe temperature range. On

the other hand, the crystal structure data of Heinemannet al [2] produces a more or less temperature

insensitive KD value of slightly larger than 1. Our results therefore agree with the experimental findings

of Heinemannet al [2] and Morozovet al. [3]that there does not seem to exist any cross-over partition-

ing in mixed Fe-Mg olivine system. We however need to remember that the site occupancy in mixed

Fe-Mg olivine system involves small energies given the fact that the size difference of M1O6 and M2O6

octahedra is small as opposed to the case of pyroxene. Accurate determination of crystal structure as a
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function of temperature is therefore important. Ideally, one may carry out structural optimization of the

free energy to obtain the theoretically derived crystal structures at various temperature. The use of clas-

sical pair-like potentials appear promising in that respect since fully quantumCar-Parrinello molecular

dynamics in prohibitively expensive due to that large unit cell and complexityof the system. However,

we are faced with the difficulty that none of the currently available classicalpotential are successful in

capturing the required covalency effect that derives the site preference of Fe2+ ion towards M1 [12].

Work is in progress trying to improve upon the existing classical potentials. Finally, even if equilibrium

state hasKD > 1 at all temperatures, metastableKD < 1 states may become long-lived and easily ac-

cessible at higher temperatures particularly if the crystal data drives a significant variation in KD value.

It is therefore possible that the sample preparation procedures may tilt the balance one way or the other

which may produce an out of equilibrium sample withKD < 0.
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Chapter 5

First-principles Simulations of Structural,

Electronic and Magnetic properties of

vacancy bearing Fe silicates

The phenomenon of charge ordering, which is generally observed in highly correlated materials involv-

ing transition metals, has drawn the attention of physicists since the days when itwas first observed

in 1939 by Verway in magnetite. This is because it encompasses within itself a number of novel and

interesting phenomena, such as increase in electrical resistivity, superconductivity and collosal mag-

netoresistance. Anticipating the importance of charge ordering, in this chapter, we present our study

of a charge ordered mineral, known as laihunite, which is an oxidation product of fayalite(Fe2SiO4).

We have simulated the lattice structure of laihunite by introducing appropriate number of vacancies

at the cationic sites as demanded by the reported chemical formula of laihunite and studied its struc-

tural, electronic and magnetic properties using first principle density functional theory(DFT). Our DFT

simulated structure (which is compositionally close to naturally occurring laihunitecompound) shows

good agreement in the general trend in the change of Fe2SiO4 crystal structure upon vacancy introduc-

tion. Our study shows that the introduction of vacancy creates charge disproportionation of Fe ions into

This chapter is based onPhys Chem Miner.38259 (2011)
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Fe2+-like and Fe3+-like ions with a charge difference larger than 0.5, keeping the valences of other ions

unaltered. Fe2+-like ions are found to occupy octahedral sites of specific symmetry while Fe3+-like

occupy the other leading to charge ordering at zero temperature. We alsostudy the magnetic ordering

of Fe ions.

5.1 Introduction

As already discussed, the octahedral sites in olivine in general can be occupied by divalent cations

M2+ (e.g. Fe2+, Mg2+, Co2+, Mn2+). Large number of studies have addressed site occupancies and

ordering of divalent octahedral cation in olivines [8, 9, 10, 11]. We have also addressed the site prefer-

ence problem in Mg-Fe olivine using first principles density functional calculations[12], as presented

in chapter 3. In contrast, much less studies have been carried out for minerals bearing significant quan-

tities of trivalent cations at the octahedral sites. Laihunite[13, 14, 15], an intermediate temperature

oxidation product of fayalite[7](Fe2SiO4), which is the Fe rich end member of (Mg,Fe)2SiO4, is the

best known example of such mineral. Published literature on laihunite compounds are of varying com-

position, but follow the general formula [16]¤xFe2−xSiO4 where¤ represents vacancies andx can

range from 0.24 to 0.5. To the best of our knowledge, though there existsfew experimental studies

on laihunite, the theoretical studies in understanding this defect structure are minimal. This class of

mineral is particularly interesting since it provides the interesting situation of mixed valency of Fe ions,

leading to possibility of charge disproportionation and charge ordering atFe site that has drawn the

attention of physicists since years, for example in the case of magnetite (Fe3O4)[17] and manganites

(e.g. La0.5Ca0.5MnO3[18]). In this chapter, we present a detailed study of the structural, electronic

and magnetic properties of laihunite withx=0.5. For this purpose we start with a pure fayalite mineral

with formula Fe2SiO4, in which we introduce vacancies to arrive at a compound with chemical formula

¤0.5Fe1.5SiO4. The site preference of vacancy formation is determined through first-principles DFT

calculations. Strong electron-electron correlation effect and the magnetism at Fe site in high spin state

is achieved through the local spin density approximation (LSDA)+U calculations, as already explained
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Table 5.1Energy required for creation of vacancy at different atomic sites of fayalite.

site energy(eV) site energy(eV)

M1 6.65 O1 9.99

M2 9.17 O2 9.80

Si 10.92 O3 9.86

in the Methodology section. The crystal structure of the vacancy introduced fayalite is then optimized

to generate the crystal structure of laihunite. The electronic structure of the optimized structure has

been studied in detail in terms of charge dispropotionationand charge ordering at Fe sites. We also

study the underlying magnetic ordering.

The following section contains the results of our first principles simulation whichis divided into

several sub-sections. Section II A describes the study of the site preference of vacancy formation while

section II B describes the optimized crystals structure of laihunite, which is formed upon introduction

of vacancies into fayalite. Section II C describes the electronic and magneticstructure of laihunite

as calculated within the framework of DFT. The chapter concludes with discussion and summary in

section III.

5.2 Results

5.2.1 Site preference of vacancy

Fayalite, an olivine structured mineral can be viewed as a distorted hexagonal close packed (HCP) array

of oxygen ions (shown in Fig. 5.1A), with half of the octahedral sites and one-eighth of the tetrahedral

sites occupied by Fe and Si respectively. As already discussed in chapter 3, an olivine structure mineral

has two symmetry distinct octahedral sites: M1, on a centre of symmetry and M2, on a mirror plane.

There is only one distinct tetrahedral site, and three distinct oxygen sites,O1 and O2 on the mirror

plane and O3 in a general position. Fig. 5.1B shows the crystal structure of fayalite with all the

inequivalent atoms marked. The formation energy of a single vacancy, i.e,the energy associated with
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removing a single ion from the lattice to an isolated state, calculated using LSDA+Utotal energies with

plane wave basis are tabulated in Table I for vacancies created on different sites of pure fayalite. The

theoretical background for calculation of vacancy formation energy has benn dealt with in great detail

in chapter 2 of this thesis. We have employed Eqn 2.126 of chapter 2 while calculating the vacancy

formation energy. As it is clearly seen from Table I, M1 site is the most preferred site for vacancy

creation, followed by M2 site, while the most difficult site to create vacancy is Si. Among the oxygen

sites, O2 is found to be more favorable compared to O3 and O1. The formationenergies quoted in

Table I, were obtained by considering single vacancy in one unit cell of fayalite. We have checked

the reliability of our result by considering a supercell of 2×2×2, the general trend is found to be the

same. The computational effort prohibits us to go to larger supercells. In principle, to get an accurate

estimate of vacancy formation energy, one should carry out calculations with increasing dimension of

the cell and check the convergence of the defect energy. Since we are interested in finding out the

general trend in terms of the most favorable position for vacancy formationrather than an accurate

estimate of vacancy formation energy, the calculated numbers using one unitcell serve our purpose.

The previous calculations [26] for Forsterite (Mg2SiO4) using atomistic method of modeling with inter-

atomic potentials which carefully checked the convergence with increasing cell size also find M1 to be

the most favorable position for vacancies.

5.2.2 Crystal structure of laihunite

In order to create laihunite with a formula¤0.5Fe1.5SiO4 out of fayalite, one needs to introduce two

vacancies in a unit cell of fayalite which contains four formula unit. Followingour analysis presented

in previous section, we choose M1 and M2 sites for creation of this double vacancies. There are in

total four M1 sites and four M2 sites in a unit cell and double vacancies at M1 and M2 site can be

created in six distinct ways. The distinct configurations are shown in Fig. 5.2 and the total energies

corresponding to the optimized geometries of these configurations are listed inTable II. As found,

in case of single vacancy, the creation of double vacancies is also favored at M1 sites. Analysis of

configurations with double vacancies at M1 sites, show configuration 1 to be of lowest energy, while
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(A)

(B)

b

c

c

b

Figure 5.1 (A) Schematic diagram showing the approximate hexagonal closed packingof
oxygen atoms in case of fayalite projected on to thebc plane. (B) The total structure of
fayalite. Large, medium and small atoms designate Fe, Si and O atoms. The red(dark)
octahedra are the M1O6 octahedra and green (light) octahedra are M2O6 octahedra. The
three distinct oxygen atoms O1, O2 and O3 have been marked. The solid line depicts the
zig-zag chain connecting the nearest neighboring M1 and M2 octahedra.
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(2) (3)(1)

(4) (6)(5)

Figure 5.2 Schematic diagram showing different configurations with all possible waysin
which two vacancies can be created at the metallic sites in fayalite. The Si and Odegrees
of freedom have been omitted out from the figure for clarity. Red (dark)and green (light)
filled circles represent M1 and M2 sites respectively. The empty circles depict the vacant
octahedral site.

the energy of the configuration where two vacancies sit in two neighboring M1 sites are significantly

higher. This indicates that the vacancies do not favor cluster formation.

In the following, all the analysis are therefore carried out with configuration 1. The distortion of

the HCP network of oxygen ions upon introduction of Fe2+ cations and Si ions at the octahedral and

tetrahedral sites gives the fayalite crystal structure orthorhombic symmetrywith Pbnmspace group.

The introduction of vacancies in fayalite further reduces the symmetry. Theoptimized geometry in

configuration 1 turned out to be that of triclinic. A comparison of the lattice constants between fayalite

with and without vacancies show(see Table III) substantial contraction alongb andc axis when vacan-

cies are introduced, which as expected, leads to an overall reduction ofthe unit cell volume. While in

fayalite there are six distinct classes of atoms, the lowering of symmetry in presence of vacancies gives

rise to 14 different classes of atoms as listed in Table III. Table IV lists the corresponding atomic posi-

tions. Fig 5.3 shows the geometry optimized structure of configuration 1 with distinct class of various

atoms marked. In case of fayalite the M2O6 octahedra centered about Fe2 ions are larger in volume and
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Table 5.2Total energies corresponding to the six different configurations with double vacan-
cies created at M1 and M2 sites in fayalite as shown in Fig. 5.2.

configuration Energy(eV) configuration Energy(eV)

configuration1 -208.04 configuration4 -205.56

configuration2 -207.95 configuration5 -204.74

configuration3 -206.46 configuration6 -203.73

more distorted(measured in terms of root-mean-square deviation of the Fe-Obond length) compared

to M1O6 octahedra centered about Fe1 ion. The introduction of vacancies in case of¤0.5Fe1.5SiO4 re-

verses this trend (see Table V), in the sense that the M2O6 octahedra occupied by Fe3 and Fe4 become

smaller in volume compared to M1O6 occupied by Fe1 and Fe2. In Table V we also list these quantities

corresponding to only available [13] crystal structure data of laihunite ofcomposition¤0.4Fe1.6SiO4.

We find that although the concentration of the vacancies are different between computed configuration

1 and experimentally measured crystal, the general trend in terms of comparison of bond lengths and

distortions between M1O6 and M2O6 octahedra show good agreement with each other. The lattice con-

stants (a=4.81A0, b=10.19A0 and c=5.80A0) and volume [283.9(A0)3] of ¤0.4Fe1.6SiO4 also show

good agreement with that of geometry optimized configuration 1 of¤0.5Fe1.5SiO4 (a=4.77A0, b=10.08

A0, c=5.73A0 and volume = 275.1(A0)3).

5.2.3 Electronic and Magnetic Structure of fayalite with double vacancies at the metal-

lic sites.

Basic Electronic structure- In this section we describe the electronic structure of configuration 1

which is basically the fayalite structure with double vacancies at M1 sites. In fayalite, the Fe atoms are

found to be in high spin state, with a magnetic moment of 3.6µB

Fig. 5.4A presents the LSDA+U density of states for the vacancy bearing fayalite in configuration

1 projected onto Fe-d, O-p and Si-sp states. The zero of the energy scale is set at the top of the valence

band. It can be seen that there is negligible contribution from Si to the occupied part of the DOS. States
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Figure 5.3 Optimized structure of configuration 1. The various categories of inequivalent
atoms have been marked.

Table 5.3 The lattice constants and Wykoff positions for each species for Fayalite in or-
thorhombic space group and configuration 1 in triclinic space group.

a(A0) b(A0) c(A0) atom class coordinates

Fayalite 4.82 10.47 6.07 Fe1 4a (0,0,0),(1/2,1/2,0),(0,0,1/2),

(1/2,1/2,1/2)

Fe2, Si, O1, O2 4c (x,y,1/4),(x+1/2,-y+1/2,3/4),

(-x,-y,3/4),(-x+1/2,y+1/2,1/4)

O3 8d (x,y,z),(x+1/2,-y+1/2,-z),

(-x,-y,z+1/2),(-x+1/2,y+1/2,-z+1/2),

(-x,-y,-z),(-x+1/2,y+1/2,z),

(x,y,-z+1/2),(x+1/2,-y+1/2,z+1/2)

config. 1 4.77 10.08 5.73 Fe1 a (0,0,0)

Fe2 e 1/2,1/2,0

Fe3, Fe4, Si1, Si2, O1 2i (x,y,z),(-x,-y,-z)

O2, O3, O4, O5, O6, O7, O8
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Table 5.4Crystal structure data for configuration1.

space group a(A0) b(A0) c(A0) alpha beta gamma

P-1 4.76656 10.07953 5.72763 88.5041 90 90

ATOM X Y Z ATOM X Y Z

Fe1 0.0000 0.0000 0.0000 Fe2 0.5 0.5 0.0

Fe3 0.9923 0.2712 0.2596 Fe4 0.4923 0.2287 0.7403

Si1 0.4397 0.0943 0.2501 Si2 0.9397 0.4056 0.7498

O1 0.2233 0.8953 0.7627 O2 0.2766 0.3953 0.7627

O3 0.3252 0.9429 0.2381 O4 0.1747 0.4429 0.2381

O5 0.2721 0.1696 0.0276 O6 0.2984 0.1791 0.4592

O7 0.7721 0.3303 0.9723 O8 0.2015 0.6791 0.4592

Table 5.5Structural comparison between fayalite, laihunite and vacancy bearing fayalite in
configuration 1(double vacancies at M1 sites).

Fayalite(Fe2SiO4) Laihunite configuration1

M1-O (av. Bond length) (A0) 2.15 2.19 2.11

volume of octahedra((A0)3) 13.25 14.01 12.53

M1-O(RMS deviation) 0.05 0.07 0.06

M2-O (av. Bond length)(A0) 2.18 2.04 2.02

volume of octahedra((A0)3) 13.81 11.32 10.99

M2-O(R.M.S deviation) 0.10 0.09 0.08
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Figure 5.4 (A) Partial density of states for configuration1 as shown in Fig. 5.2 projected
onto Fe-d, O-p and Si-sp states;(B) Partial DOS showing the Fe-d orbital for Fe at M1 site;
(C) Partial DOS of Fe-d orbital for Fe at M2 site. Within each panel the upper(lower) sub-
panel corresponds to majority(minority) spin. The negative of DOS has been plotted for the
minority spin channel. The zero of the energy is set at the LSDA+U calculated Fermi energy
(drawn as vertical dashed lines in (B) and (C)).

close to the Fermi level are dominated basically by O-p and Fe-d where they strongly hybridize. The

d-p hybridized band extends from -9.5 eV to 4 eV.

Figs. 5.4B and 5.4C show the Fe-d density of states projected onto Fe1 and Fe2 atoms occupying

M1 sites and Fe3 and Fe4 atoms occupying M2 sites, respectively. Focusing onto down spin channel,

it is found to be nearly empty for Fe atoms occupying M2 sites while it is partially filled for atoms

occupying M1 site. This gives rise to charge disproportionation between Fe ions occupying M1 (two

in number) and M2 sites (four in number), with those occupying M1 sites beingclose to Fe2+ and

those occupying M2 sites being close to Fe3+. The charge difference between the two are found to be

about 0.55. This leads us to conclude that the Fe ion in mixed valence state Fe2.67+ in ¤0.5Fe1.5SiO4,
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charge disproportionates in following matter: 6 Fe2.67+ → 4 Fe3+ + 2 Fe2+. The magnetic moments

of Fe sites occupying M1 and M2 sites are found to be 3.7µB and 4.3µB respectively, supporting

the charge disproportionation between M1 and M2 sites. The preferentialoccupancy of Fe2+ like

ions into M1 sites and that of Fe3+ like ions into M2 sites give rise to a charge ordered pattern as

shown in Fig. 5.5. The charge density has been calculated in a narrow energy window close to the

Fermi-level. Within this energy range, there is negligible contribution from Fe at M2 (which is close

to the 3+ state), whereas for Fe at M1 (which is close to the 2+ state) there is asharp peak in the

down spin channel of the d-orbital. This peaking as already stated, is dueto the presence of a single

electron in the down spin channel for Fe1 and Fe2 in high spin d6-configuration. The charge density

calculated in this energy interval therefore shows the accumulation of charge around M1 site, whereas

the M2 site remains devoid of any charge. This charge ordering is drivenby the structural distortion

that happens due to introduction of vacancy. In our earlier communication we have shown that for a

mixed Fe-Mg olivine system, Fe2+ prefers to occupy the smaller sized M1 sites which is driven by

the delicate balance between size consideration and co-valency effect. While the Fe-O co-valency is

similar between Fe2+ and Fe3+, their ionic sizes are rather different: Fe2+ cation (0.76A0) is larger

than Fe3+ cation (0.65A0). The introduction of vacancies on the other hand reduces the volume of

M2O6 octahedra substantially, making them smaller compared to M1O6 octahedra. It is therefore mere

size consideration that dictates the preference of M2 sites by Fe3+ like ions and M1 sites by Fe2+ like

ions.

Magnetic Ordering- Finally, we turn on to magnetic ordering of Fe ions. The magnetic interaction

between partially filled Fe ions mediated by oxygen ions are expected to be super-exchange driven

anti-ferromagnetic interaction. In case of fayalite the antiferromagnetic order has been confirmed both

experimentally and theoretically [28, 6]. There are however two anti-ferromagnetic configurations

that are possible as shown in Fig. 5.6. In one case (configuration A) the Fe spins within the zig-

zag chain consisting of neighboring M1-M2 sites are anti-ferromagneticallyaligned while the inter-

chain interaction is ferromagnetic. In the second case (configuration B),the intra-chain interaction is

ferromagnetic while the inter-chain interaction is anti-ferromagnetic. The totalenergies corresponding
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M1

M2

O

Si

Figure 5.5 (Color on-line) Charge density plot for fayalite with double vacancies at M1 sites
as in configuration 1. Contour height is set at 0.004/A03

.

to both magnetic configuration A and B are listed in Table VI corresponding to different vacancy

configurations. In all case, the magnetic configuration B, which satisfies AFM inter-chain interaction

between corner sharing FeO6 octahedra and FM intrachain interaction between edge sharing FeO6

octahedra are found to be stable. The same magnetic arrangement was obtained also for pure fayalite

compound [6]. Note, this leads to strong AFM Fe3+-O-Fe3+ superexchange between corner-shared,

interchain M1O6 and M2O6 octahedra while the edge-shared interactions between M1O6 and M2O6

octahedra within a given chain remains FM. Though the strong AFM nature of interchain Fe3+-O-Fe3+

superexchange is in agreement with the predictions of Kan and Coey [29], our DFT predicted magnetic

configuration is different from that by Kan and Coey, which would lead tomagnetic configurations

with no specific spin arrangement within a given chain. We found that the magnetic structure proposed

by Kan and Coey to be about 160 meV higher in energy than that given by the DFT predicted ground

state magnetic structure(config. B).

5.3 Conclusion

We have carried out first-principles calculation of fayalite compound uponintroduction of vacancy. Our

study consists of structural optimization, study of electronic and magnetic structure. Our first-principles

optimized geometry with two vacancies introduced at preferred M1 cationic sites in a unit cell of four
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Table 5.6Total energy of the three structures with double vacancies at M1 sites in thetwo
types of possible anti-ferromagnetic configuration as shown in Fig. 5.2.

configuration AF order

configuration A configuration B

energy(eV) energy(eV)

configuration1 -208.48 -208.62

configuration2 -208.57 -208.70

configuration3 -206.92 -207.02

(A) (B)

Figure 5.6 [The two possible anti-ferromagnetic order in fayalite] The two possible anti-
ferromagnetic order in fayalite. Solid lines show the intra-chain and dashedlines show the
inter-chain interactions. Red (dark) and green (light) filled circles represent M1 and M2 sites.
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formula units leading to a chemical composition of¤0.5Fe1.5SiO4 show good agreement with the struc-

tural details of naturally forming, vacancy bearing compound, laihunite of formula¤0.4Fe1.6SiO4. This

provides reliability of DFT calculations in description of complex minerals with defect structure. The

study of electronic structure shows that the introduction of vacancy leadsto charge disproportionation

at Fe site, with Fe2+ like ions occupying octahedra of site symmetry M1 of the fayalite lattice and Fe3+

like ions occupying octahedra of site symmetry M2 of the fayalite lattice. This is caused by the specific

site preference of the vacancy formation and the accompanying structural relaxation, which reverts the

size relationship between M1O6 and M2O6 octahedra of the original fayalite lattice. The preferen-

tial occupancy of Fe2+ like and Fe3+ like ions in M1 and M2 sites leads to charge ordering within

the zig-zag chain of M1-M2 at T=0K which are found to be antiferromagnetically ordered. Finally,

our first-principles prediction of charge ordered state in laihunite lists this compound in the category

of compounds with interesting charge ordering properties like like manganitesand magnetites, which

should be experimentally verified. This may lead to study of charge order-disorder transition as a func-

tion of temperature, possible melting of charge-ordered phase by electric field to name a few. From the

point of view of geological interest, our study will form the basis of study of vacancy diffusion in Fe

bearing olivines, known as the transition metal extrinsic diffusion [30]. This kind of diffusion is de-

termined by both chemical potential and temperature as opposed to pure intrinsic or extrinsic diffusion

and therefore depends on the ratio of Fe2+ and Fe3+ which would change dynamically as the vacancy

propagates. We present our study of vacancy diffusion in Fe containing olivines in the next chapter.
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Chapter 6

Vizualizing frozen point defect tracks in

Fe containing olivines.

Trajectories made by point defects, like vacancies, during migration potentially contain a wealth of

valuable informations [1] about the environment within which diffusion has taken place. For instance,

in the case of free diffusion, the tracks are nearly isotropic, while in the case of directed diffusion,

which occurs in the presence of temperature or stress gradient, elongated tracks are produced. Infact, a

study of diffusion tracks left by proteins on cell membrane[2] , is known toyield information about the

cell cytoskeletal network.

But, the main challenge here lies in the direct,in-situdetermination of the vacancy migration, which

is known to be a difficult task. Hence, the other option is to look for indirect methods for determination

of vacancy migration tracks. We have devised one such indirect method using a combination of first-

principles calculation and classical Monte-Carlo technique for vizualization of past tracks of vacancies

imprinted within Fe-containing silicate minerals such as olivine and pyroxene. We have considered

olivine as an example because it is computationally more tractable because of the comparatively smaller

size of its unit cell as compared to other minerals in this class.

This chapter is based onEPL98, 29001 (2012)

111
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6.1 Introduction

Olivine mineral as already stated, has a general formulaM2SiO4, M being a divalent cation. The unit

cell is composed ofSiO4 tetrahedral units, which are arranged such that they produce two typesof

octahedral voids differing in geometry, named as M1 and M2, which are partially occupied by metal

cations. For the present study we focus on Fe-Mg olivine. From geological studies on olivines [3],

it is well known that, on a macroscopic scale, vacancies become fully mobile only above 13000C.

Therefore, they are in a non-equilibrium state on macroscopic scale. However, within a temperature

range of 1300 to 6000C, or so, vacancies are expected to move over shorter length scales, though such

motion is not enough to equilibrate ionic occupancies[4]. It is precisely the situation we are interested

in.

We have employed quantum mechanical density functional theory based simulation technique to

determine local site-dependent parametrs such as : defect formation energies, site preferences of metal-

lic ions and migration barriers for vacancy diffusion from one site to another in olivine. These parametrs

in-turn act as inputs to a classical model Hamiltonian, which we use to simulate vacancy diffusion in

olivine.

This Chapter is organized as follows : The next section deals with results obtained using ab-initio

calculations. In this section we first present our results on vacancy formation energy at all cationic

and anionic sites in olivine and the dependence of vacancy formation energy on the concentration of

Fe in the olivine cell. This is followed by relative site preferences of the various chemical species

such as Fe2+, Fe3+ and Mg. In the last sub-section under section II, we report the barrierpotentials

for migration of vacancy. In Section III we present our 2D lattice gas modelthat we have devised to

simulate vacancy diffusion in Fe containing olivine. In the following section, we present our results

obtained after performing the Monte-Carlo simulation where we are able to indirectly vizualize the

path of vacancy migration. Finally we conclude the chapter withn a brief summary of our results and

also propose possible experimantal verification of our findings.
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6.2 Ab-initio Results

6.2.1 Vacancy formation energy at all cationic and anionic sites and its dependence on

Fe-content

We have carried out calculations of vacancy formation energies at all sites for both iron-free and iron

bearing olivines, though the focus of our study will be on iron-bearing olivines. Similar calculations

have been reported in literature[5] for Fe-free end member, Mg2SiO4 The vacancy formation energy, as

already mentioned previously, is obtained by subtracting the total energy ofthe vacancy-free structure

from the sum of the energies of the vacancy bearing structure and the energy of the atom in isolation

at which vacancy is created. Due to the presence of defect charges(q) in certain cases, defect-defect

correction of the formE(correction) = αq2/εL is included, whereα is the Madelung constant, L

is the cell length, andε is the dielectric constant. Fig. 6.1 shows the vacancy formation energies

at various cation and anion sites, measured with respect to the formation energy at M1 site, the site

at which the vacancy is formed most easily, for both iron-free and iron-bearing olivines. For iron-

free olivine or Mg2SiO4, the order in which vacancy prefers to be created at various sites is found to

be M1 > O3 > M2 > O2 > O1 > Si. This trend is consistent with the results obtained[6] based on

simulations using classically derived potential parameters. Upon introductionof Fe, the trend is found

to be altered toM1 > M2 > O3 > O2 > O1 > Si. What is remarkable is that, upon introduction of

Fe, vacancy is formed with much greater ease at M1 site compared to other sites, the formation energy

at M1 site being smaller by 2-3 eV compared to other sites. The relative ease at which vacancy is

formed at M1 site increases with increasing concentration of Fe, as is shown in Fig. 6.1, considering

two different concentrations of Fe 25% and 50%, and formation energy differences between M1 and

M2.

In addition, we also find that the absolute value of the formation energy depends crucially on the

Fe content. This is illustrated in the right panel of Fig. 6.1, where vacancy formation energy at M1 site,

the site in which vacancy is formed with maximum ease, is plotted as a function of Feconcentration.

We find that there is a sharp drop in the formation energy from about 11 eVin iron-free case to about
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Figure 6.1 (Color online) Left panel: The vacancy formation energy at various cationic and
anionic sites for iron-free as well iron-bearing olivines, measured with respect to that at M1
site. Black bar, dashed bar and cyan (light grey) bars represent iron-free olivine, iron bearing
olivine with 25% Fe and with 50% Fe respectively. The inset shows the crystal structure of
olivine, projected ontobc plane, with M1, M2, O1, O2, O3, Si sites marked. Right Panel:
The vacancy formation energy at M1 site for various Fe concentrations of olivines. Inset
shows the M-site only sublattice, with M1 (M2) sites marked as small (large) balls.

Figure 6.2 (Color online) Plot of magnetization density of olivine containing 37.5% of Fe
(3 sites out of 8 M sites being occupied by Fe) and having a vacancy situated at the central
M1 site of the lattice. Two of the M2 sites adjacent to vacancy as well as corner M1 sites are
occupied by Fe, rest of the M sites being occupied by Mg.

7 eV by introduction of 12.5% of Fe. Upon increasing the Fe concentration further, the formation

energy reduces further, attaining a value of 6 eV for 50% Fe concentration. The above analysis leads

us to conclude that introduction of Fe, reduces the formation energy of vacancy substantially as well as

increases the relative ease at which vacancy is formed at M1 site compared to other sites significantly.

The origin of this dramatic change in the vacancy formation energies lies in the fact that while Mg
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can occur only in nominal valence 2+, both nominal valences of 2+ and 3+ are stable configurations

for Fe. This causes the vacant site in Fe bearing olivine to be neutral as opposed to pure Mg olivine in

which case the vacancy remains as a charged site. This is reflected in the calculated magnetic moments

at Fe sites, for which we find that for each vacancy introduced in the unitcell, two of the Fe sites possess

higher magnetic moments (4-4.2µB) compared to other Fe sites having magnetic moments in the range

3.5 - 3.8µB. This indicates a charge disproportionation into Fe+(2.5+δ ) and Fe+(2.5−δ ) as shown in the

magnetic density plot in Fig. 6.2. In the chosen configuration, shown in Fig. 6.2, the central M1 site

is vacant, while two of the M2 sites adjacent to vacancy as well as corner M1sites are occupied by Fe,

rest of the M sites being occupied by Mg. We find that the magnetization densityaround the corner Fe

sites being very different from that of the Fe’s at The M2 sites, reflecting a charge disproportionated

situation. Further evidence of the charge disproportionation toFe2+-like andFe3+-like valences, in

the presence of vacancy, is obtained from the density of states plot projected onto different Fe sites, as

presented in Fig. 6.3. The states in the majority spin channel are occupied for both the Fe sites, while

in the minority spin channel, all the states are empty for one of the Fe atom and are partially occupied

for the other Fe atom, establishingFe3+-like andFe2+-like valences of the two atoms respectively.

The oxygens connected to Fe atoms at M2 site also exhibit different magneticmoments compared

to those connected to Fe atoms at corners due to large Fe-O covalency.

6.2.2 Relative site preference of Fe2+, Fe3+ and Mg

In the next step, we decide on the relative site preferences of the different chemical ions at various M

sites, by calculating total energies of various configurations. Fig. 6.3 summarizes all the results. The

left most panel shows calculations for 25% of Fe in an unit cell, so that 2 sites out of 8 M sites in

the unit cell are occupied by Fe, which upon introduction of vacancy at the M1 site, selected at the

centre of the box, transforms to be Fe3+ like state with a magnetic moment of≈ 4.2 µB. Comparison

of the total energies between the configuration shown in top with Fe atoms occupying M1 sites and

that shown in bottom with Fe atoms occupying M2 site shows that it is energeticallypreferable for

Fe3+ like ions to occupy M2 site compared to M1 site by an energy of about 250 eV per Fe. For M2
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Figure 6.3 The spin-polarized density of states projected ontod-states of the Fe atom sit-
ting at the M2 site(solid line) and that projected ontod-states of the Fe atom sitting at M1
site(dashed line). The partial densities of states are calculated by projecting onto a sphere of
radius 1.302 Åfor both the Fe sites.
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sites, there are two possible ways in which it can be occupied by two Fe’s, either at sites belonging

to same chain(shown in top of the middle panel), another at sites belonging to different chains(shown

in bottom of the middle panel). We note that in the former situation, the Fe3+ like ions are separated

from the vacant site by a distance of≈ 3.26 while for the later they are separated by a distance of≈

3.62 . Comparison of total energies shows that the former is preferable byan energy of 20 meV per

Fe, indicating Fe atoms closest to vacancy transform to Fe3+-like valence. Finally, in the right panel,

we consider the situation where three Fe atoms are present, two of them exhibiting Fe3+-like valence

and one exhibiting Fe2+-like valence. Total energy calculations carried out considering Fe2+-like ion

placed at M1 site as opposed to M2 sites, shows the former to be more stable byan energy of 24 meV.

The above results put together indicates preference of Fe2+-like ions at M1, Fe3+-like at M2 and at

the sites closest to vacant site which itself shows a preference of M1 site, while the Mg2+ ions have

negligible site preference (confirmed by separate calculations). The preference for Fe2+-like ions at

M1 and Fe3+-like at M2 has been discussed previously.[10]

6.2.3 Calculation of barrier potential

In order to simulate diffusion, one last piece of vital information in addition to theones determined

till now is the numerical values of the barrier potential that the vacancy has toface while moving from

one site to the other. We considered a 50:50 olivine with 50% of Fe and 50% ofMg and considered

the propagation of a single vacancy. The M sites are populated with Fe and Mg ions according to their

preferences as determined in the previous section. A single vacancy is considered at one of the central

M1 site within a two unit cell super-cell containing 8 f.u., as shown in Fig. 6.4. The Fe atoms placed at

M2 sites, sitting next to vacancy are 3+ like while rest of the Fe atom within the cell are 2+ like. There

are several possible paths between all adjacent M sites in the olivine structure. It is shown previously

that the migration of vacancy in olivine is fastest along [001] direction with smallest barrier height.

Following this idea we first considered the propagation of vacancy from M1 site to a neighbouring M1

site along [001] direction with initial and final configurations as shown in Fig.6.4. The barrier height

was computed employing nudged elastic band (NEB) method[7] using five different images other than
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Figure 6.4 (Color online) Site preferences of Fe2+-like and Fe3+-like ions in olivine in pres-
ence of a single vacancy in the 4 f.u. unit cell. The vacant site is indicated byan empty
circle, the Mg atoms by green (light grey), Fe3+-like atoms by white and Fe2+-like atoms by
red (dark grey) balls. Left panel: Configurations with 2 Fe3+-like ions at M2 (top) and M1
(bottom) sites. Middle panel: Configurations with 2 Fe3+-like ions at M2 sites near (top) and
far (bottom) to vacant site. Bottom panel: Configurations with 2 Fe3+-like ions at M2 sites
and a Fe2+-like ion at M1 (top) and M2 site (bottom) site. The energy difference between
bottom and top configurations are listed at the bottom of each panel.
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Figure 6.5 Barrier height of vacancy propagation along [001] direction in a 50:50 Fe-Mg
olivine, as obtained in a NEB calculation. The initial and final configurationsare shown in
left and hand insets, respectively. Various paths of vacancy propagation (except A and B
which are perpendicular to the plane of the figure) are shown in the top inset.

the initial and final image. The barrier height came out to be about 0.68 eV which is very similar to that

obtained for pure Mg olivine.[5] This leads us to conclude that introductionof Fe although influences

the vacancy formation energy significantly, its influence on the barrier height is minimal. The barrier

heights considering other paths, e.g, between two M1 sites along [100] direction (A), between two M2

sites along [100] direction (B), that between two M2 sites within [001] planes, migration connecting

M1 and M2 sites (D and E) are found to be about 8, 12, 2, 3 and 6 times larger than the barrier height

for propagation connecting two M1 sites along [001] direction.

6.3 The 2D lattice gas model and the Monte-Carlo simulation.

Based on the results of our quantum chemical calculations, we introduced a2D lattice gas model which

we studied by means of Monte Carlo technique.[8] We model the site preference of various metallic

ions in a 2D M-only lattice (cf right inset in Fig. 6.1) within a spin-like model. We considered a

pseudo-spin variableSi = +1 (-1) for Fe(Mg).Si = 0 denotes vacant site. The fact that Fe can have 2+
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or 3+ -like valence with two different site preferences, is taken care of by introducing another variable

ξi , which can take values +1 (-1) for Fe sites of valences 2+ -like (3+ -like)and otherwise is +1. A

model Hamiltonian involving the above defined pseudo-spins can then be written as follows:

H = J ∑
i, j∈NN

SiSj +D∑
i

(1−S2
i )−h∑

i

Si

−hs[ ∑
i∈M1

fi(Si ,ξi)− ∑
i∈M2

fi(Si ,ξi)]

where the summation in the forth term extends over M1 and M2 sublattices, for the rest of the terms the

summation extends over all the sites in the lattice. The functionfi takes values+a/−a for (Si ,ξi) =

(+1,+1)/((+1,-1),b for Si = 0 and 0 forSi = -1. hSa andhSb therefore governs the strong site preference

exhibited Fe and vacancy, respectively.J is the chemical interaction between first nearest neighbors

(NN), h gives the difference of chemical potentials between Fe and Mg. The chemical potential for

vacancy is given by the parameters inD. The unknown parameters in the model Hamiltonian,H,

are obtained by mapping the DFT total energies for various different configurations with different

arrangements of occupations of M1 and M2 sites by Fe, Mg and vacancy onto H. Such an approach

has been proved to be successful in studying crossover partitioning problem in olivine.[11] We started

with some initial distribution of Fe and Mg atoms at sites on a 2D M-only lattice and studied the

evolution of vacancy propagation using Monte Carlo algorithm. During the Monte Carlo move, the

vacancy propagation from one site to a neighboring site, is determined by thesite-specific vacancy

formation energy and the migration barrier, and comparing to the Boltzmann factor. In the above sense,

this is different from standard Metropolis algorithm, for which only the energy difference between

initial and final states matters.

6.4 Vizualization of vacancy track.

Using the 2D lattice gas model as presented in the previous section we next tryto simulate the diffusion

of a single vacancy in the body of the olivine crystal. The results of such asimulation is highly inter-

esting. The vacancy, as is shown in the detailed quantum chemical calculations, transforms valences of

neighboring Fe atoms to Fe3+-like valences, which makes up for the charge depletion concomitant with
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Figure 6.6 (Color online) Snapshots of M-only lattice at two different MC step. Shown
are only positions of wrong Fe sites. The region around the vacancy, marked with a box,
is shown in the zoomed view with all M sites shown explicitly. The green and blackballs
denote positions of Mg and Fe2+ like ions at wrong (M2) sites, respectively. The red (dark
grey) annular rings indicate Fe2+ like ions at M1 while the triangle and square indicate the
positions of Fe3+ like ions and vacancy, respectively. Left panels: For perfectly ordered
starting configuration. Right panels: Partially ordered starting configuration.
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the removal of a metallic ion. The Fe3+-like ions due to its strong site preference tend to occupy M2

sites, which otherwise is awrongsite for Fe with its nominal valence of 2+. As the vacancy diffuses

away from the neighborhood, the Fe3+-like sites transform back to Fe2+-like sites, since Fe3+-like sites

also show preference to be close to vacant site. As a result, Fe atoms, nowin its 2+-like valence, re-

main stranded in an unfavorable position, since there is no scope for Fe atom to return to its favorable

location, M1, which is not vacant anymore. The vacancy, therefore, leaves behind a series of wrong

Fe sites (Fe atoms occupying M2 sites) as it propagates through the lattice, which forms a trace of its

propagation track. Visualization of such a track, requires distinction of M1and M2 sites as well as

detection of chemical species at a given site. Understandably, visualization of the track is most clean,

if one starts from a perfectly ordered case with all Fe (Mg) atoms occupying M1(M2) sites as shown in

left panels in Fig. 6.5, for a simulation on a 200× 200 lattice with 50% Fe occupancy. Starting with

partially ordered situation with wrong Fe sites to start with, makes the visualizationdifficult, though

wrong Fe sites produced by vacancy propagation would have a distinct track-like feature, while the

other wrong Fe sites would be randomly distributed. Such a scenario is shown in right panels of Fig.

6.5, where the initial configuration was chosen such that it had 250 wrongFe sites out of total 1000 Fe

sites. Increasing disorder makes the detection of vacancy track (“signal”) from the randomly occupied

sites due to disorder (“noise”) difficult.

While we have used the example of olivine to illustrate our point in this Letter, a similar situation

is expected to prevail in pyroxene. Since in pyroxene site disorder of Feand Mg occupancy is smaller

than olivine due to the larger energy differences,[10] we expect detection of vacancy tracks to be even

easier.

6.5 Summary and possible experimental verification

In summary, the present study shows: (a) the presence of vacancy creates Fe2+-like and Fe3+-like

ions which have two different site preferences, with Fe3+-like ions occupying sites closest to vacancy

(b) presence of Fe substantially enhances the preference of vacancy formation at M1 site, and most
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importantly it proposes (c) creation of wrong sites as the trail of the vacancy as it passes by. The

creation of trail of wrong sites enables to track the vacancy path, therebyoffering an alternative way

of visualizing point defects. Note, though the site preference problem in olivine, has been studied

earlier,[10] those were either in absence of vacancy or carried out in pure Fe system, therefore did not

had the interesting situation of mixed valency and creation of wrong sites, as inthe present case.

We believe that tracks such as those shown in Fig.6.6 should be observablein experiment where

one needs to (a) distinguish between Fe and Mg, which have distinct electron energy loss spectroscopy

(EELS) obtained spectra,[12] and (b) determine whether Fe is at an M1 orM2 site; a feat which is

achievable using present day high-resolution transmission electron microscopy (HRTEM) techniques.

Though this is a challenging experiment, but forms an emerging field in experimental science and

observation of such tracks have been already attempted in the context of other systems. For example,

the study[13] by Gaoet. al on binary oxide, imaged the structure change during oxygen vacancy

migration in CeO2 induced by electric field using HRTEM. Further, the EELS experiments werecarried

out to show the change of chemical valence of the Ce ions. The application of such approach to olivine

will be certainly a worthwhile experiment to carry out.
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Chapter 7

Conclusion and scope for future study.

The main aim of this thesis was to study the structural, electronic and magnetic properties of silicate

minerals, using first principles density functional theory and also to simulate properties involving longer

time-scales, such as the equilibration and diffusion properties using classical Monte-Carlo technique.

The silicate mineral which we have mostly paid attention to is olivine. This is because it has a

comparatively simpler structure and hence easier to simulate. The other interest we had in examining

this mineral was to give a theoretical explanation to the various disputes in the experimental community

revolving around certain properties of this mineral. We have also studied pyroxene to a lesser extent,

which happens to be a major constituent of the upper mantle of the earth along with olivine.

A similarity between olivine and pyroxene is that, they both have two differentoctahedral sites,

namely M1 and M2, which are partially occupies by cations. Although these cations may be of different

kinds, we have paid special attention to Fe containing Mg-olivine and Mg-pyroxene. This is because Fe

being a transition metal ion, has very high electron-electron correlation andmay appear in more than

one oxidation state. These properties may bring about drastic effects in theproperties of these minerals.

We would like to stress here that most of the theoretical results reported till date are dedicated to Fe-

free olivine. But we have consistently involved Fe in our calculation, because natural olivine contains

about 12.5 % of Fe and we believed and also proved that presence of Fecan make a big difference in

the properties of the olivine mineral. Hence, to be able to compare theoreticalresults and experimental

127
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findings, one should incorporate Fe into the system.

This thesis is divided into two parts. The first two projects (chapter 3 and chapter 4) are dedicated

to defect-free silicate minerals. In the next two chapters (chapter 5 and chapter 6) we have studied the

effect of vacancy on Fe containing silicate minerals.

In the following we summarize the major findings of the present thesis.

(a) Site preference of Fe in olivine and pyroxene

In this project, we found the important role played by co-valency in determining the site preference

of Fe in olivine and pyroxene. As discussed in great details in chapter 3,M1 and M2 are the two

sites which are the contenders for hosting Fe. The two main properties of these octahedra, that help in

deciding the site preference are, their size/volume and the correspondingcovalency of Fe in these sites.

We find that in the case of pyroxene, both size and co-valency work hand in hand to make Fe prefer

M2 site. This has also been observed experimentally and hence helps put our theory on firm footing.

When we extend this theory to the case of olivine, where site preference of Fe is somewhat disputed,

we find that size-wise Fe prefers M2 site, whereas the Fe-O co-valencyis larger at M1 site. Since the

size difference between M1 and M2 is not significant, co-valency wins and Fe prefers to sit at M1 site

in the case of olivine.

(b)Temperature dependence of site preference of Fe in olivine

It has long been debated among experimental groups, whether the site preference of Fe changes

beyond a certain temperature. We have tried to resolve this issue using a combination of first princi-

ples density functional calculation and classical Monte-Carlo technique. We have proposed a model

Hamiltonian in this regard, the parameters of which were obtained from DFT calculation. Our calcu-

lation finds that there is a strong preference of Fe for M1 site at very highand very low temperatures.

This is because the M1 and M2 octahedral volumes are similar at these temperatures and hence co-

valency has a stronger effect. At intermediate temperatures, around 6000 C, the difference between M1

and M2 becomes significant, that gives a tough competition to co-valency. However, no-where in the

whole temperature range does the size difference between M1 and M2 become so large as to create a

"cross-over".
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(c) Structural, electronic and magnetic properties of vacancy bearing Fe silicates

Charge disproportionation and ordering are the two phenomena that has intrigued physicists for a

long time. In this project, we have theoretically investigated using quantum mechanical density func-

tional based tools, a mineral which is compositionally close to the laihunite structure found naturally, by

introducing appropriate number of vacancies at the cationic sites of Fe2SiO4. Our theoretically devel-

oped structure very well mimics the reported trends in structural changes on introduction of vacancy,

hence showing that our theory is capable of reproducing results involving very complicated defect

structures of minerals. Incorporation of vacancy leads to some of the Fe inits nominal 2+ oxidation

state to change to nominal 3+ oxidation state, in order to maintain the overall charge neutrality of the

system. Our calculations find that these two different species of Fe prefer two different octahedral sites,

leading to charge ordering. We have further studied the underlying magnetic order.

(d) Visualizing frozen point defect tracks in Fe containing silicate minerals. Vacancy migration

tracks contain a wealth of information, but its direct,in situ determination is a challenging task. Here,

we have developed a method for indirect determination of the imprints of vacancy migration track in

the case of Fe containing silicate minerals. With the introduction of vacancy, twoof Fe2+ sitting in

the neighborhood of the vacancy change valence to nominal 3+, in order to maintain over-all charge

neutrality. The crystal now has two different species of Fe, in nominal 2+ and 3+ oxidation states,

which were found to have two different site preferences, Fe2+ preferring M1 and Fe3+ preferring M2.

Our calculations found that vacancy-Fe3+ system move together as a cluster in the crystal, i.e, as the

vacancy migrates, it converts two of the nearest Fe2+ to 3+ state, which has a preference for M2 site.

Now as the vacancy diffuses away, these Fe3+ now sitting in the M2 site, convert back to Fe2+ which

although prefers M1 site are stuck up in unfavorable M2 site. Hence the trail of the vacancy diffusion

track appears in the form of Fe2+ stuck at wrong M2 site.
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7.1 Scope for future work

This thesis presents initial results of our venture into the world of geo-sciences, using combined ab-

initio and classical simulation tools. We have addressed only a few interesting problems, which leaves

a lot of scope for future work. To mention a few :

In our project on temperature dependence of site preference of Fe in olivine, we have borrowed

the crystal structure data of olivine at different temperatures from Redfern et al. and Heinemannet

al.. The ideal situation would be the one where we had simulated our own structure at different tem-

peratures. This could be done either classically or quantum mechanically. For a classical simulation,

we require good force fields which should capture the very delicate co-valency Fe-O effect in addition

to other properties. Such a kind of force field does not exist in the literature, and the development of

one such would be invaluable in the study of olivine mineral. A quantum mechanical approach would

require performing Car-parinello molecular dynamics simulation, which although very expensive, may

be attempted. Since the site preference of Fe at each temperature has a dependence on the crystal struc-

ture, it would be nice if we can generate our own crystal structure making the calculations completely

independent of experiments which will also enable us to comment on the thermodynamic and elastic

properties of the olivine crystal.

As an extension to the vacancy diffusion problem, the diffusion of Li can be investigated, which

is a tracer element, in olivine. The similarity between vacancy and Li is that, theyboth are deficit of

charge, vacancy by+2 and Li by+1, when they sit in the cationic sites meant for divalent cations like

Mg2+ and Fe2+. As a result they change the valence of Fe atoms in their neighborhood to maintain

the overall charge neutrality. Li being small in size is attributed with the property that it may migrate

through both interstitial sites and cationic sites.

In the whole thesis we have paid our attention to olivine crystal structure only, in addition to py-

roxene. These two minerals as stated earlier are the major constituents of the upper mantle of the earth.

As we go deeper down, because of the increase of pressure, the atomsin these minerals re-arrange

themselves to give rise to denser packing. It would be worthwhile to study theeffect of pressure and
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hence the elastic properties of these mineral structures.

Mineral named wadsleyite is reported to hold a lot of water, and may co-existwith a hydrous

melt at transition zone pressure-temperature conditions. This mineral is found in the lower mantle and

is a high-pressure polymorph of olivine. Compared to olivine, this silicate mineral has three kinds of

octahedral units named M1, M2 and M3 and the SiO4 tetrahedral units appear in pairs. The microscopic

origin of its large water retention capacity, would be interesting to study.


